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Abstract. — Given a complex smooth quasi-projective variety X, a semisimple algebraic group G defined
over some non-archimedean local field K and a Zariski dense representation o : 71(X) — G(K), we
construct a p-equivariant (pluri-)harmonic map from the universal cover of X into the Bruhat-Tits building
A(G) of G, with some suitable asymptotic behavior. This theorem generalizes the previous work by
Gromov-Schoen to the quasi-projective setting.

As an application, we prove that X has nonzero global logarithmic symmetric differentials if there exists a
linear representation 71 (X) — GLp (K) with infinite image, where K is any field. This theorem generalizes
the previous work by Brunebarbe, Klingler and Totaro to the quasi-projective setting.

Résumé (Applications pluri-harmoniques & valeurs dans un immeuble euclidien et formes différen-
tielles symmétriques)

Etant donnée une variété quasi-projective complexe lisse X et une représentation o : 71 (X) — G(K)
Zariski dense du groupe fondamental dans un groupe algébrique semi-simple G sur un corps local non-
archimédien K, nous construisons une application (pluri-)harmonique p-équivariante du revétement uni-
versel de X a valeur dans I’'immeuble de Bruhat-Tits A(G) de G, qui a de plus un comportement asymptotique
adéquat. Ce théoreme généralise dans le cadre quasi-projectif un résultat de Gromov et Schoen.

Comme un application de ce résultat, nous montrons que s’il existe une représentation linéaire 71 (X) —
GLy (K) d’image infinie, o K est n’importe quel corps, alors X posseéde des formes différentielles
symétriques logarithmiques non-nulles. Ce théoreme généralise dans le cadre quasi-projectif un résul-
tat de Brunebarbe, Klingler et Totaro.
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0. Introduction
0.1. Main theorem. — Let X be a complex smooth quasi-projective variety, and let G be a semisim-

ple algebraic group defined over a field K. In this paper, we mainly focus on representations
o : m(X) - G(K), where K can be the field of complex numbers, a number field, or a non-
archimedean local field. We refer to such a representation o as Zariski dense if the Zariski closure of
its image is G.
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In the archimedean setting, i.e., when K is the field of complex numbers, Donaldson, Corlette,
and Labourie established the existence of p-equivariant harmonic maps to symmetric spaces when
X is a compact Kéhler manifold (cf. [Don87, Cor88, Lab91]). Mochizuki extended this result to the
quasi-projective case, proving the existence of p-equivariant pluriharmonic maps in [Moc07].

In the non-archimedean setting, i.e., when K is a non-archimedean local field, Gromov and Schoen
proved the existence of p-equivariant pluriharmonic maps to the Bruhat-Tits building of G when
X is a compact Kihler manifold (cf. [GS92]). However, extending their result to quasi-projective
varieties has remained a significant open problem for the past three decades. A series of works by
the second and fourth authors [DM21,DM?23c, DM24a, DM23a] have made progress in extending the
Gromov-Schoen theory to the quasi-projective setting.

The main goal of this paper is to complete the generalization of Gromov-Schoen’s theorem to the

quasi-projective setting. Our main theorem is as follows.
Theorem A (=Theorems 2.1 and 3.9 and Proposition 3.2). — Let X be a complex smooth quasi-
projective variety, and let G be a semisimple algebraic group defined over a non-archimedean local
field K. Denote by X the universal cover of X. If o : m1(X) — G(K) is a Zariski-dense representation,
then there exists a p-equivariant, pluriharmonic map i : X — A(G) to the Bruhat-Tits building A(G)
of G, such that the following properties hold:

(1) the map i is locally Lipschitz, and has logarithmic energy growth (cf. Definition 3.8).

(i1) the map i is harmonic with respect to any Kdhler metric on X.

(iii) Let X be a smooth projective compactification of X, such that ¥ := X\X is a simple normal
crossing divisor. For any smooth point x of %, if the local monodromy of o around the irreducible
component of X containing x is quasi-unipotent, then there exists an open neighborhood Q. of x
in X such that the energy E*[Q.\Z] of i on Q,\X is finite (cf. (1.1) and (2.4) for the definition
of energy).

(iv) Let f : Y — X be a morphism from a smooth quasi-projective variety Y. Denote by f - Y — X the
lift of f between the universal covers of Y and X. Then the f* 0-equivariant map iio f Y — A(G)
is pluriharmonic and has logarithmic energy growth.

0.2. An application. — Esnault asked whether a smooth projective variety with an infinite funda-
mental group has non-trivial symmetric differentials. This was confirmed by Brunebarbe, Klingler,
and Totaro [BKT13, Theorem 0.1] in the linear case, when X is a compact Kédhler manifold.
Theorem 0.1 ([BKT13]). — Let X be a compact Kdhler manifold. If there is a linear representation
o0 : 1 (X) — GLy (K) with K being any field such that o (7, (X)) is infinite, then H*(X, Sym*Qyx) # 0
for some positive integer k.

Building on ideas from previous works [Kat97,7Zu096,Eys04,Kli13,BKT13] and using Theorem A,
we extend Theorem 0.1 to the quasi-projective setting.
Theorem B. — Let X be a smooth quasi-projective variety, and let T : n1(X) — GLy (K) be a linear
representation where K is any field. Let X be a smooth projective compactification of X such that
Y := X\X is a simple normal crossing divisor. If the image of T is an infinite group, then there is a
positive integer k such that H*(X, SykaY(log %)) #0.

Let us mention that Theorem A has further applications in other areas. For more recent develop-
ments, we refer readers to [CDY22,DYK23,DY24, DM24b].

0.3. Notation and Convention. —

(1) Unless otherwise specified, algebraic varieties are assumed to be connected and defined over the
field of complex numbers.

(2) A log smooth pair (X, X) consists of a smooth projective variety X and a simple normal crossing
divisor = on X. We denote by X := Y\Z, and 7y : X — X the universal cover map.

(3) Let X be a smooth projective variety. A line bundle L on X is sufficiently ample if there exists a
projective embedding ¢ : X < PV such that L = t*Oan (d) for some d > 3.

(4) Alinear representation o : 71(X) — GLy (K) with K some field is called reductive if the Zariski
closure of o(7;(X)) is a reductive algebraic group over K.
If Y is a closed smooth subvariety of X, we denote by oy : 71(Y) — G(K) the composition of
the natural homomorphism 71 (Y) — 7;(X) and o.
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(5) Denote by D the unit disk in C, and by D* the punctured unit disk. We write D, := {z € C | |z] <
r},Di:={z€C|0<|z] <r},and D, ,, :=={z€C|r <|z] <ra}.

Acknowledgment. — The paper is long as it incorporates the section on harmonic map theory into
Euclidean buildings in the (unpublished) work of the second and fourth authors [DM21]. We would
like to thank Michel Brion, Hélene Esnault, Auguste Hébert, Nicolas Monod, Guy Rousseau for
useful discussions and comments. Damian Brotbek is supported by the grant Lorraine Université
d’Excellence - Future Leader. Georgios Daskalopoulos is supported in part by NSF DMS-2105226.
Ya Deng is supported by the ANR grant Karmapolis (ANR-21-CE40-0010). Chikako Mese is
supported in part by NSF DMS-2005406 and DMS-2304697. We also thank the referee for his/her
very helpful suggestions in improving the clarity of the paper.

1. Preliminaries

1.1. NPC spaces and Euclidean buildings. — For the definitions in this subsection, we refer the
readers to [BH99, Rou09, KP23].

Definition 1.1 (Geodesic space). — Let (X, dx) be a metric space. A curve y : [0,¢] — X into X
is called a geodesic if the length dx(y(a),y(b)) = b — a for any subinterval [a, b] C [0, £]. A metric
space (X, dx) is a geodesic space if there exists a geodesic connecting every pair of points in X.
Definition 1.2 (NPC space). — AnNPC (non-positively curved) space (X, dx) is acomplete geodesic
space that satisfies the following condition: for any three points P, Q, R € X and a geodesic y :
[0, €] — X with y(0) = Q and y(£) = R, we have

d*(P,0,) < (1 =1)d*(P,Q) +td*(P,R) —t(1 — t)d*(Q, R)

for any ¢ € [0, 1], where Q; := y(tf).

A smooth Riemannian manifold with nonpositive sectional curvature is an NPC space. Among
these, the Bruhat-Tits building A(G) associated with a semisimple algebraic group G defined over
a non-archimedean local field K is noteworthy an example of NPC spaces. We will not provide the
lengthy definition of Bruhat-Tits buildings here, but interested readers can find precise definitions in
references such as [Rou09] and [KP23]. It is noteworthy that G (K) acts isometrically on the building
A(G), and transitively on its set of apartments. Here, G(K) denotes the group of K-points of G.
The dimension of A(G) is equal to the K-rank of the algebraic group G, which is the dimension of a
maximal K-split torus in G.

1.2. Harmonic maps to NPC spaces. — Consider a map f : Q — Z from an n-dimensional Rie-
mannian manifold (Q, g) to an NPC space (Z, dz). When the target space Z is a smooth Riemannian
manifold of nonpositive sectional curvature, the energy of a smooth map f : Q — Zis

E/ = / |df|*dvol,
Q

where (€, g) is a Riemannian domain and dvol, is the volume form of Q. We say f : Q — Z is
harmonic if it is locally energy minimizing; i.e. for any x € Q, there exists r > 0 such that the
restriction u|p_(,) minimizes energy amongst all maps v : B, (x) — Z with the same boundary values
as ulg, (x)- Here B, (x) denotes the geodesic ball of radius r centered at x.

In this paper, we mainly consider the target Z to be NPC spaces, not necessarily smooth. Let us
recall the definition of harmonic maps in this context (cf. [KS93] for more details).

Let (Q, g) be a bounded Lipschitz Riemannian domain. Let Q. be the set of points in Q at a
distance least & from Q. Denote by S, (x) := dB.(x). We say f : Q — Z is an L>-map (or that
f € L*(Q, Z) ) if for some point P € Q, we have

/dz(f(x),P)dvolg < 0.
Q

For f € L*(Q, Z), define

x € Qg

d*(f(x).f(¥)) dox.e
&2 &

e‘é Q- R, e‘é(x) = fyess(x)
0 otherwise
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where oy . is the induced measure on S, (x). We define a family of functionals
E£ 1 C.(Q) - R, E£(90) = / gpe'édvolg.
Q

We say f has finite energy, denoted by f € W2(Q, Z), if

ET[Q] := sup lim sup E£(¢) < oo.
9eC.(Q),0<9p<l &—0
In this case, it was proven in [KS93, Theorem 1.10] that there exists an absolutely continuous function
e/ (x) with respect to Lebesgue measure, which we call the energy density, such that eJ; (x)dvolg
converges weakly to e/ (x)dvol, as & tends to 0. In analogy to the case of smooth targets, we write
|V £|%(x) in place of e/ (x). Hence |V f|*(x) € Llloc(Q). In particular, the (Korevaar-Schoen) energy
of fin Qis

(1.1) ET[Q] = / |V £|*dvol,.
Q

Definition 1.3 (Harmonic maps). — We say a continuous map f : Q — Z from a Lipschitz domain
Q is harmonic if it is locally energy minimizing; more precisely, at each p € Q, there exists an open
neighborhood Q,, of p such that all comparison maps which agree with u outside of this neighborhood
have no less energy.

For V e I'Q where I'Q is the set of Lipschitz vector fields on Q, in [KS93, §2.3], the directional
energy |f.(V)|? is similarly defined. The real valued LlloC function |f,(V)|?> generalizes the norm
squared on the directional derivative of f. The generalization of the pull-back metric is the continuous,
symmetric, bilinear, non-negative and tensorial operator

mp(V,W)=TQxTQ — L'(Q,R)
where | |
7y (V, W) = SIf(V + w)|* - AV - w2

We refer to [KS93, §2.3] for more details.
Let (x1,...,x,) be local coordinates of (Q,g), and g = (gi;), g~' = (/) be the local metric
expressions. Then energy density function of f can be written (cf. [KS93, (2.3vi)])

1

. 0 0
V2= ol - —
VAP =8 )
Next assume (€2, g) is a Hermitian domain and let (z; = x; + ix2,...,2, = X2,-1 + iX2,) be local
complex coordinates. If we extend 7 ¢ linearly over C, then we have
1 of af
—|IVF]? = gVm (=2, =2).
VP =T (G 50

Definition 1.4 (Locally Lipschitz). — A continuous map f : Q — Z is called locally Lipschitz
if for any p € €, there exists an open neighborhood Q,, of p and a constant C > 0 such that
d(f(x), f(y)) < Cd(x,y) forany x,y € Q,,.

Remark 1.5. — Tt follows from the definition of |V f|? that if f is locally Lipschitz, then for any
p € Q, there exists an open neighborhood €2, of p and a constant C > 0 such that over €2, one has
IVFI><C.

1.3. Admissible coordinates. — The following definition of admissible coordinates introduced in
[Moc06] will be used throughout the paper.

Definition 1.6. — (Admissible coordinates) Let X be a complex manifold and let = be a simple
normal crossing divisor in X. Let x be a point of =, and assume that {Z j}j=1,...,c are components of X
containing x. An admissible coordinate neighborhood of x is the tuple (U;z1, ..., z,; ¢) (or simply
(U;z1,...,zn) if no confusion arises) where

(a) U is an open subset of X containing x.
(b) There is a holomorphic isomorphism ¢ : U — D" such that ¢(X;) = (z; = 0) for any
j=1...,¢.
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We define a Poincaré-type metric wp on (D*)¢ x D"~¢ by

\/_dz Adz; 1
(1.2) —Z| e Z\/—_ldzk/\de.

Z]|2(10g|ZJ 2)2 k=C+1

We note that, using the notation from the definition, one can construct a global complete metric g on
X of Poincaré-type at every point of X, provided that X is a compact Kihler manifold.

We briefly recall the construction. Fix any Kihler metric @ on X. Write X = Z;‘.zl 2 as a sum of
irreducible components. For each j = 1,...,k, choose a smooth Hermitian metric | - |; on O%(X;)
and take a section o € HO(X, 0O%(XZ;)) such that ¥; = (0; = 0) and |o7j|; < 1 over X. Then, it
suffices to set, for some C € R large enough,

k .
_ dloj|; A d|ojl;

(1.3) g =Cw+ E .
= |‘Tj|§(10g|0'j|§)2

This metric is said to be of Poincaré-type around %, meaning that for any x € X and for any admissible
coordinates centered at x, there exist constants C;, C» > 0 such that

Ciwp £ g < Chwp.

2. Existence of Harmonic maps to Bruhat-Tits buildings

In this section, we prove the existence assertion of equivariant pluriharmonic map in Theorem A,

together with a weaker version of Theorem A.(i), and Theorem A.(ii). Several technical steps are
deferred to the appendix.
Theorem 2.1 (Existence of (pluri-)harmonic maps). — Ler (X,X) be a log smooth pair, G be a
semisimple algebraic group defined over a non-archimedean local field K, and A(G) be the Bruhat-
Tits building of G. Let L be a sufficiently ample line bundle on X. Let o : n1(X) — G(K) be a Zariski
dense representation. Then there exists a o-equivariant pluriharmonic map i : X - A(G), that
is locally Lipschitz, and has logarithmic energy growth with respect to (X, L) (cf. Definition 2.15).
Moreover, it is harmonic with respect to any Kdihler metric of X.

2.1. Preliminary lemmas. — Throughout the rest of this section, let G be a semisimple algebraic
group defined over a non-archimedean local field K, and A(G) be the Bruhat-Tits building of G. We
denote by d(e, e) the distance function of A(G). We fix a Zariski dense representation o : 71(X) —
G (K) as in Theorem 2.1. Below, we summarize some results regarding the action of p.

Lemma 2.2. — If o : m1(X) — G(K) is Zariski dense, then the following holds:

(1) The action of H = o(r1 (X)) on A(G) is without fixed points at infinity.
(i) A(G) contains a non-empty closed minimal convex H-invariant subset C.

Here, C is minimal means that there does not exist a non-empty closed convex strict subset of C
invariant under H.

We refer the readers to [BH99, Chapter 11.8] for the definition of boundary at infinity of CAT(0)
spaces. Roughly speaking, it is the set of equivalent classes of geodesic rays.
Proof. — If H fixes a point at infinity, then H is contained P(K) where P is a proper parabolic
subgroup of G. This contradicts the fact that H is Zariski dense and proves Item (i). Item (ii) follows
from [CMO09, Theorem 4.3, (A.ii)]. We can argue as follows: suppose A(G) has no minimal closed
convex H-invariant set. Then it contains a decreasing sequence X,, of closed convex H-invariant sets
whose intersection is empty. Choose now a base point x in A(G) and consider the projection x,,
of x to X,,. Namely, x,, is the unique point in X,, such that d(x,x,) = inf,ex, d(x,y). Such map
exists by [BH99, Proposition 2.4.(1)]. This sequence is unbounded, otherwise the intersection was not
empty. Since the space is locally compact, it converges to some point at infinity. This point at infinity
is fixed by any 4 in H because the distance d(/.x,, X;) is bounded by d(h.x, x) by Lemma 2.3 below.
This proves Item (ii). O
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Lemma 2.3. — There exists a unique closest point projection map Il : A(G) — C, i.e., for any
x € A(G), there exists a unique I1(x) € C such that d(x,11(x)) = infycc d(x,y). Such projection
map I1 : A(G) — C is distance decreasing, and H-equivariant; i.e. I1(gx) = gll(x) for any g € H
and any x € A(G).

Proof. — The existence assertion for such projection map IT follows from [BH99, Proposition 2.4.(1)].
For g € H and any y € C, we have

d(gT(x), gx) = d(TI(x),x) < d(g"'y,x) = d(y, gx).

This implies IT(gx) = gI1(x). By [BH99, Proposition 2.4.(4)], IT is distance decreasing. This proves
Item (i1). O

Remark 2.4. — The proof of Theorem 2.1 proceeds by induction on the dimension of the domain
X. To carry out this induction, we must first establish the uniqueness of the pluriharmonic map at
each dimension. However, it is currently unknown whether an equivariant pluriharmonic map into
A(G) is unique. To address this issue, we construct an equivariant pluriharmonic map into a closed
minimal convex set C of Lemma 2.2 and show that it is the unique equivariant pluriharmonic map into
C. This step is necessary due to the existence of examples of algebraic subgroups H of a semisimple
algebraic group G with a proper, non-empty, closed minimal convex H-invariant subset of A(G) (cf.
Example 2.5 below).
Example 2.5. — Let K be a non-archimedean local field and let L be a finite extension of K. Assume
that G is an algebraic group defined over K and split over L. Then G(K) is Zariski dense and
unbounded in G(L), and the Bruhat-Tits building A(G, K) is a proper, closed, unbounded G (K)-
invariant subset embedded in A(G, L). As an example, if G = SLy, K = Qp, and L = Qz(\/i), then
A(G, L) is a tree and A(G, K) is a closed subtree. This illustrates the importance of considering the
existence of proper, non-empty, closed minimal convex H-invariant subsets in A(G).

As a closed convex subset of an NPC space, C is itself is a NPC space. Since C is o(m(X))-
invariant, we can define

2.1 0 :m(X) — Isom(C)

by setting () to be the restriction of o(y) to C. Here Isom(C) denotes the isometry group of C. To
lighten the notation, we abusively write o for g.

Lemma 2.6. — o(m1(X)) C lIsom(C) consists of only semisimple elements, i.e., for any g €
o(m1(X)), there exists Py € C such that infpcc d(P, gP) = d(Py, gPy).

Proof. Since G is semisimple, A(G) is a Euclidean building without a Euclidean factor. Let
g € o(m1(X)) such that § = g|¢ for some g € G(K). By [Par00, Theorem 4.1] and the assumption
that A(G) does not have a Euclidean factor, g is either elliptic or hyperbolic. That is, there exists
Py € A(G) such that minpep(g) d(P, gP) = d(Py, gPp). By Lemma 2.3, II is distance decreasing
and o(mr1(X))-invariant. It yields

(2.2) Peigl(fG)d(P,gP) = d(Po,gPo) > d(I1(Po),11(gPy)) = d(I1(Po), gI1(Py))

> inf d(P,gP) > inf d(P,gP).
pnf d(P.gP) > inf_'d(P,gP)

In particular,
d(I1(Po), 811 (Po)) = d(I1(Po), gI1(Po)) = inf d(P,gP) = inf d(P,gP).
PeC PeC

Hence ¢ is a semisimple isometry of C. O

Definition 2.7 (Translation length). — For any y € 7, (X), the translation length of o(y) is

. 22) .
(2.3) Ly = Pelg(fc)d(P,Q(v)P) = Iggfcd(P,Q(y)P)-

2.2. Equivariant maps and sections. — Endow X with a Kahler metric g. Let C be asin Lemma 2.2
and o : m1(X) — Isom(C) be as in (2.1). The set of all p-equivariant maps into C are in one-to-one
correspondence with the set of all sections of the fiber bundle I : X x o C — X. More precisely, for
a p-equivariant map f : X — C, we define a section of II by setting f(7x(p)) = [(5, f(p))], where
p is any point in X. Since the energy density function |V f|? on X is a 7y (X)-invariant function, it



PLURIHARMONIC MAPS INTO EUCLIDEAN BUILDINGS AND SYMMETRIC DIFFERENTIALS 7

descends to a function on X, denoted by |V f|*. We also define the energy of f in any open subset U
of X by setting

(2.4) E'[U] :/ |V £|*dvoly.
U

2.3. Pullback bundles. — Let f : Y — X be amorphism between smooth quasi-projective varieties.
Let Y be a connected component of X Xx Y. Then we have the following commuting diagram:

Y
|7
bs % 7 v
Yy —X
Ry \L”X

y —L5 x
It induces a fiber bundle [Ty : ¥ x f+0 C — Y, such that one has the following commuting diagram:

?xf*g(,’%fxg(}

b

y —L »x
Note that, given any section u : X — X x o C of Ilx, the composition
uof:Y — X Xo C

defines a section of the fiber bundle ¥ x rroC=f *()? Xo C) — Y, which in turn defines a f*p-
equivariant map i s : Y — C. Define uy := iy o my, which is an f*o-equivariant map ¥ — C. It
defines a section

ur: Y —» ?Xf*g C.

In this paper, we will mainly focus on the special case where Y is a closed smooth subvariety of X and
¢t : Y — X is the inclusion map. In this cases, we will use the notation

(2.5) uy 1Y =Y X, C.

in place of u,, where oy : 71(Y) — Isom(C) denotes the composition of ¢, : 71 (Y) — m;(X) and p.

On the other hand, for any section u# : ¥ — Y X f+o C of the fiber bundle Y X 0 C — Y, the
composition of u with the natural map Y X 0o C — X x oCisamapY — X X,, C. For notational
simplicity, we will abusively denote this map as

(2.6) u:Y — X x,C.

2.4. Regularity results of Gromov-Schoen. — Let X be a hermitian manifold and leti : X — A(G)
be a p-equivariant harmonic map. Following Section 2.3, let u : X — X % o A(G) be the section
corresponding to i#. We recall some results in [GS92].

Theorem 2.8 ( [GS92], Theorem 2.4). — A harmonic map i : X — A(G) is locally Lipschitz
continuous. _ m|
Definition 2.9 (Regular points and singular points). — A point x € X is said to be a regular point
of i if there exists a neighborhood N of x and an apartment A C A(G) such that 43(N) c A. A
singular point of i is a point in X that is not a regular point. Since i is p-equivariant and G (K)
acts transitively on the apartments of A(G), it follows that if x € Xisa regular point (resp. singular
point) of i, then every point of 71'}_(1 (mx(x)) is a regular point (resp. singular point) of i. We denote
by R (i) (resp. S(i7)) the set of all regular points (resp. singular points) of iz and let R(u) = nx (R (it))
(resp. S(u) = nx(S(@K))).
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Lemma 2.10 ( [GS92], Theorem 6.4). — The set S(u) is a closed subset of X of Hausdorff codi-
mension at least two. For any compact subdomain Q, of X, there is a sequence of Lipschitz functions
{¥;} with ¢; = 0 in a neighborhood of S(ii) N Q1, 0 < Y; < 1L and y;(x) — 1 for all x € Q\S(u)
such that

.lim/ Vul*|Vilw" =0
1—00 Ql
and
1im/ [VVu| |[Viilw™ = 0.
1—00 Ql

O

2.5. A Bertini-type theorem. — In this subsection, we will prove a Bertini-type theorem that plays
a crucial role in proving the pluriharmonicity of i in Theorem 2.1.

Proposition 2.11. — Let (X,X) be a log smooth pair with n := dim X > 2. Let L be a very ample
line bundle on X and fix an integer k > 3. Set T = |LK|*""=V)_ Consider the universal complete
intersection

@:{(x,Hl,---Hn_l)efxﬂ erm--'an_l} CcXxT,

and let & := R N (X X T) be the restriction of the universal family to X X T. Denote by 7 : R—T
and © : R — T, the canonical projections induced by the second projection X X T — T. Let
T° C T be the Zariski open subset such that, for every (Hy,...,H,_1) € T°, the hypersurfaces
Hy,...,H,_| are smooth, and the divisor Hy +- - -+ H,_1 + X is simple normal crossing. Let us denote
by m° : R° = n~1(T°) — T° be the restricted family. Then:

(i) The open subset T° is non-empty.
(ii) For any point x € X and v € TyX, there exists some (Hy,...,H,—_1) € T° such that x €
Hin...NnH,_1and HyN...N H,_| is tangent to v.

(iii) The family n° : R° — T° is locally topologically trivial.

The proof of Proposition 2.11 relies on the following Bertini-type result.
Lemma 2.12. — Let N > 3 be a positive integer. Let Y c PN be a smooth projective subvariety of
dimension m > 1. Fix an integer d > 3. Let x € PN and v € Ten . Let Py, C |Opn(d)| be the
general hypersurfaces in PN of degree d which pass through x and are tangent to v. If dimY > 2, or
x Y, then Py, is non-empty and

(1) a general element of P, is smooth;
(ii) a general element of P, intersects with Y transversely;
(iii) the base locus of Py, is {x}.

Proof. — Consider the incidence variety
I={(y,H) €Y xPy,|y€cH and T,Y C TyH}.

Then I parametrizes the set of points (y, H) such that H intersects Y non-transversally at y. We first
prove that py(I) # Py, where py : (y,H) — H is the second projection. We shall do this by a
classical dimension count.

Fix y € Y and denote by

Iy=pi' (W) = {He Py, | (vH) eI} C Py,
where p; : (v, H) — y is the first projection. Consider the 1-jet map
(2.7) Iy HO(BN, Opn (d) — Opn (d) ® Op /My
which is surjective as d > 3. Note that (x, v) € Tx x defines a linear map
L,: @PN,x/mf»N’x — C?
given by L, (f) = (f(x),df (v)). Let Vy,, := ker(L, o J.). For any H € |V ,|, we have x € H and
H is tangent to v. Hence |Vy,,| = Py.,. Note that dim V., = dim H*(PV, Opn~ (d)) — 2. Consider the

map
Iy, HY BN, 0en (d)) = Opn (d)ly © Oy y/my, = C™!
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which is surjective as d > 3. Then |kerJ§’y N Vil =1y.
Claim 2.13. — We have
=m+1 i
codimp_ I, " z].‘x =Y
’ >m—-1 ifx=y.
Proof. — We may suppose that x = [1 : 0 : --- : 0]. An element H € |Opn(d)| is given by a
homogenous polynomial of degree d,

- . . iO.-- lN
F= 30 i g X X3

[0y-e-» iN
io+---+iny=d
Consider the inhomogeneous coordinate (z,...,2n) = (%, cely );—’(‘)’). Then F be can expressed as
(2 8 .— . . i1 e in
.8) Jo:= iy, ....In < N
100 in
ip+--+in=d

We write v := Zf.\:’l bia%_|x. The condition H € |V, , | is equivalent to

2.9 aqp,...0=0, brag-1,1,0..0+b2aq-10,1,0...0+...+bnaag10,..,1=0.
Case 1: y # x. We may suppose that y = [0: 1:0:---: 0]. On the open set (X; # 0) c PV we
choose the coordinate (zg, 22, ...,2n5) = ( ;—‘f, ;{—f el X—’:’) One deshomogenizes F to the polynomial

f=aia-10...020+a0.4d.0..0+a0,d-1,10,..0%2+ " +0a0,d-1,0,..01ZN +0(2).
Therefore, the map
1. 0pN 2
Jy : H'(PY, Opn (d)) — Opn (d) ® @Pw’y/mPN’y
is just given by
1
Iy (f) = ai,a-10.,...,020 + @0,d.,0,....0 + 40,d-1,1,0,...,022 + = - - + A0,d-1,0,....0,1ZN -
Since d > 3, it follows from (2.9) that
1 . 2
Jy|Vx,v . Vx’v — @PN (d) ® @PN,y/mPN’y
is surjective. Therefore,
1 ) 2 o mrl
Jy,y|Vx,v :Vay = Opn (d)|y ® @Y,y/my,y =C
is also surjective. This implies that

codimp,_ Iy, = rank (J)I/,y|Vx,v) =m+1.

Case 2: y = x. In the inhomogeneous coordinates (z1, . . ., zx) introduced earlier, the map J! defined
in (2.7) can be expressed as

(2.10) 12(fo) = @ap....0 + Ad-1.1,0,..021 +* +dd-1,0,.. 012N>
where fj is defined in (2.8). Then the rank of

Tlvey t Ve = Opn (d) ® Opn [

PN, x

is N — 1. It follows that rank J; v, = m — 1. Therefore,

codimp, I, = rank (Jll,’y|vx,v) >m—1.

By Claim 2.13, for any y € Y\{x}, one has
dim/, < dimPy, -m—-1 and dim/, <dimPy,—m+ 1.
This implies that, when x ¢ Y, one has

dm/=m+dimP,, —m—1<dimPy .
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When x € Y and dimY > 2, one has
dim/ = max{m +dim Py, —m — 1,dim Py, —m + 1} < dim Py ,.

In conclusion, p;(I) & Pyx,,. Note that for any H € P, ,\p2(I), H contains x, H is tangent to v, and
it intersects with Y transversely.

Now we want to show that a general element in Py, is smooth. We first note that the base locus of
P, is {x}. By the Bertini Theorem, a general element of P, , is smooth away from x. We just need
to show that a general element of P,_,, is smooth at x. If F € H*(PN, Gpn (d)) is not smooth at x, then
JL(fo) =0, where fo(z1,...,zn) is the inhomogeneous polynomial of F defined in (2.8). Therefore,
if we denote by V C Py, the set of hypersurfaces which are singular at x, we have

codimp, |V =N — 1.
This proves that a general element of H in Py, is smooth. m|

We can now turn to the proof of the proposition.
Proof of Proposition 2.11. — We embed X into some PV using the very ample line bundle L. The
fact that 7° is non-empty is a direct consequence of Lemma 2.12.

Let us prove Proposition 2.11.(ii). Write ¥ = »™ ¥;. For any I = {iy,...,ix} C {1,...,m},
we denote by X; 1= %; N...NZ%;. Fix any d > 3, and consider Py, C |Opn(d)| as above. Note
that x ¢ Xy forany / c {1,...,m}. According to Lemma 2.12, a general hypersurface H; in Py, is

smooth, which intersects X transversely, and is also transverse to each X; with dim £; > 1. Therefore,
HjNZXis asimple normal crossing divisor of the smooth projective variety Hy, and v € Ty, . We now
apply Lemma 2.12 for the log smooth pair (H; N X, H; N Y) inductively to find smooth hypersurfaces
H»,...,H,_1 €|0(d)| satisfying the conditions in Proposition 2.11.(ii).

Let us now come to the last part of the statement. Let us consider R =7 (T°) and denote by
7°: % — T° the induced morphism. This is a smooth proper family of curves, and therefore each
fiber has the same genus which we shall denote by g. Moreover, since every fiber intersects with X
transversally, this intersection consists of exactly M := (dL)"~1) - X distinct points. In particular,
the map ﬁo|2 n N R — T° is étale. From there one deduces that for any small enough

(euclidean) open subset U C T°, there exists a homeomorphism ¢ : 7! (U) — U x C, such that
o(ZN7T Y (U)) ={q1,...,qm} where C is a fixed curve of genus g with M distinct marked points.
This implies in particular that |y = U X (C\{q1, - . ., gm) is topologically trivial. O

2.6. Logarithmic energy growth (I). — Let (X, X) be a log smooth pair. Let L be a sufficiently
ample line bundle on X. For a harmonic map on X, we introduce the notion of logarithmic energy
growth with respect to (X, L).
We first recall a Lefschetz hyperplane theorem for smooth quasi-projective varieties in [Eyr04,
Theorem 1.9].
Theorem 2.14. — Let (X,X) be a log smooth pair. If L is a very ample line bundle on X, then for
any smooth hypersurface H € |L| such that H + X is simple normal crossing (the choice of such a
hypersurface is generic by the Bertini theorem), the natural homomorphism y(H\XZ) — m1(X\X) is
surjective. m|
For any element s € H(X, L), we set ¥; := s~1(0), Yy := ¥;\Z, and denote by ty, : Yy — X the
inclusion map. Let

(2.11) U={seH"X,L)|Y issmooth and ¥; + % is a normal crossing divisor}.
For g € X, consider the subspace
(2.12) V(g) = {s € H'(X, L) | s(q) = 0} and U(q) = UNV(q).

According to Lemma 2.12, the sets U and U(g) are Zariski dense open subsets of H(X, L) and V(q)
respectively.

According to Theorem 2.14, it follows that o(71(Y;)) = o(71(X)). This equality implies that if
o(m1(X)) does not fix a point at infinity of C, then oy, also does not fix a point at infinity of C.
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In [DM23a], the second and fourth authors introduced the definition of logarithmic energy growth
for harmonic maps from quasi-projective curves to CAT (0)-spaces. We can now extend this definition
to any smooth quasi-projective variety.

Let T := |L|*=1_ Consider the universal complete intersection

é:{(x,Hl,---Hn_l)erﬂ erm-.-mHn_l} cXxT.

Let T° be the Zariski open subset of T defined in Proposition 2.11. We set Z° := (X X T°) N % and
let us denote by n° : #° — T° the projection map. Then by applying Theorem 2.14 inductively, for
each fiber R of 7°, the homomorphism 71 (R) — 71 (X) is surjective.
Definition 2.15 (Logarithmic energy growth (I)). — Let o : 71(X) — G(K) be a Zariski dense
representation where G is a semi-simple algebraic group defined over a non-archimedean local field
K. Assume that ii : X — A(G) is a p-equivariant harmonic map. If dimc X = 1, we say i has
logarithmic energy growth if there is a positive constant C such that for any O < » < 1, one has
2 2

(2.13) ilogl < E"[D, ] < ilog1+C,

2n r ’ 2m r
where D is a conformal disk in X centered at p € . The constant L, is the translation length of o(y)
defined in Definition 2.7, where y € m{(X) is the element corresponding to the loop y around p.

If dimc X > 2, a p-equivariant harmonic map # : X — A(G) has logarithmic energy growth with
respect to (X, L), if for any fiber R of 7° : #° — T°, the section ug : R — R X oz A(G) has
logarithmic energy growth. Here og : 71(R) — A(G) and ug are defined in (2.5).

Remark 2.16. — Note that when dim X > 2, the definition of logarithmic energy growth in Defini-
tion 2.15 depends a priori on the choice of a projective compactification X of X and a sufficiently
ample line bundle L on X. In Proposition 3.6, we will prove that for the harmonic map constructed
in Theorem 2.1, it has logarithmic energy growth with respect to any projective compactification X
and any sufficiently ample line bundle L. Consequently, we can give a more intrinsic definition of
logarithmic energy growth in Definition 3.8 that surpasses Definition 2.15.

Example 2.17. — To clarify Definition 2.15, we give an example of a harmonic map that does not
have logarithmic energy growth in the sense of Definition 2.15. For a non-archimedean local field
K, the building of GL(K) is a real line R. The action of GL|(K) on R is translation by v(k) where
v : K* — Ris the valuation of K. Let X = C* and o : 71(X) — GL|(K) be the trivial representation,
i.e. o(y) is the identity map for any y € 71 (C*). Consider the universal cover

n:C—>C"
w b exp(w).
Define a map

ii:C—-R
1 w
w = 5‘/ (exp*(dlogz+dlogZ)) = Re(w).
0

Then i is a p-equivariant pluriharmonic function. It descends to a function u : C* — R defined by
u(w) = log|wl|.

Endow D* with the standard Euclidean metric V-1 %. However, note that the energy is
independent of the choice of metric on the Riemann surface. We can easily compute the energy of u
in the annulus D, | := {r < |z| < 1} c C*:

log 1 2 1
E"[D, ] = / dt / df =2rlog —.
logr 0 r

Although the energy of u grows logarithmically as » — 0, the p-equivariant harmonic function i does
not have logarithmic energy growth in the sense of Definition 2.15. Indeed, the definition of logarithmic
energy growth depends on the translation length L, of o(y) where y € m;(C*) corresponds to the
loop around the puncture. Since o is the trivial representation, the translation length is L,, = 0 and
the p-equivariant harmonic function of logarithmic energy growth is identically equal to a constant.
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2.7. Existence of harmonic maps from Riemann surfaces. — We state the existence and unique-
ness of equivariant harmonic maps from Riemann surfaces of logarithmic energy growth.

Lemma 2.18. — Let Y = Y\{p1,...,pn} where Y is a compact Riemann surface and let G be
a semisimple linear algebraic group defined over a non-archimedean local field K. Assume that
oy : m1(Y) — G(K) is a Zariski dense representation. Let C C A(G) be a non-empty closed minimal
oy (m1(Y))-invariant convex subset as in Lemma 2.2. Then there exists a unique Qy-equivariant
harmonic map ii : Y — C with logarithmic energy growth.

Remark 2.19. — The existence statement in Lemma 2.18 directly follows from [DM?23a, Theorem
1.1]. On the other hand, the uniqueness theorem of [DM23a, Theorem 1.2] is proven under the
additional assumption that o : 71(X) — A(G) does not fix the point at infinity. Thus, the main focus
of the proof of Lemma 2.18 is to adapt the proof of [DM23a, Theorem 1.2] to the case where C is not
necessarily the entire A(G).

Proof of Lemma 2.18. — To prove existence, we use the fact that C is an NPC space and apply
[DM23a, Theorem 1.1] for which the assumptions are:

(A) the action of oy (71(Y)) on C does not fix a point at infinity, and
(B) oy (/) is semisimple for each j € {1,...,n}, where 1/ € m;(Y) is the element associated to the
loop around the puncture p ;.

Lemma 2.2 (i) implies assumption (A) and Lemma 2.6 implies assumption (B).

To prove the uniqueness, we use the minimality of C and a slight variation of the proof of [DM?23a,
Theorem 1] where the target space is a building. We shall assume on the contrary that i, it : Y >C
are distinct py-equivariant harmonic maps with logarithmic energy growth. The following three steps
lead to a contradiction to the assumption that oy does not fix a point at infinity.

Step 1. We first define an increased sequence of subsets of C

(2.14) Coc---cCrC---

inductively as follows: First, let Cy = ﬁo()7), and then let C; be the union of the images of all
geodesic segments connecting points of Cx_1. The oy (71 (Y))-invariance of Cy implies the oy (711 (Y))-
invariance of Cx. The set |J;_, C is the convex hull of the image of iy, and the minimality of C

implies
c=Jc
k=0

Step 2. To each Q € C, we assign a geodesic segment &< in C as follows: First, for Q = iig(q) € Co,
let

(2.15) 210,11 - C, d2(1) = (1 -1)iig(q) + tii1 (g).

In the above, the weighted sum (1 — )P + ¢Q is used to denote the points on the geodesic segment
connecting P and Q. Note that 7€ is well-defined by [DM23c, (3.1), (3.3)]. Since C is a convex
subset of A(G), iip and ii; are harmonic as maps into A(G), we can thus apply [DM23c, (3.16)] to
conclude that {7%}pec, is a family of pairwise parallel of geodesic segments of uniform length.
(We can assume they are all unit length by normalizing the target space.) Since iy and i@ are both
oy-equivariant, the assignment Q — < is gy (71 (Y))-equivariant; i.e. oy (y)72 = 39 "2 for any
0 ey andy € 7T1(Y).

For n € N, we inductively define a py (71 (Y))-equivariant map from C,, to a family of pairwise
parallel geodesic segments as follows: For any pair of points Qg, Q1 € C,—1, apply the Sandwich
Lemma of [BH, 11.2.12 Exercise] with vertices Qg, Q1, P := 20(1), Py := 721(1) to define a one-
parameter family of parallel geodesic segments 72 : [0, 1] — C withinitial point @, = (1-1)Q¢+tQ;
and terminal point P, = (1 — )Py + tP;. The inductive hypothesis implies that the map Q — &<
defined on C, is also gy (m;(Y))-equivariant. Finally, consider Q € C such that Q; — Q where
Q; € U, C. In this case, let 02 be the corresponding py (1 (Y))-invariant geodesic segments and
let o€ be the limit of i The above construction defines a oy (71 (Y))-equivariant map

Q|—>5'Q

from C to a family of pairwise parallel geodesic segments contained in C.
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Step 3. We extend these geodesic segments into a geodesic ray as follows: For Q € C, we inductively
construct a sequence {Q;} of points in C by first setting Qo9 = Q and then defining Q; = 5! (%).

Next, let
Le = U Jii
i=0

where 12 = 59(]0, 1]). Therefore, L2 is a union of pairwise parallel geodesic segments. Thus,
{LQ}QEC is a family of pairwise parallel geodesic rays. Moreover, the oy (71 (Y))-equivariance of
the map Q + < implies o(y)5<2i-! (;31) =g eQia (%). Thus, if {Q;} is the sequence constructed
starting with Q¢ = Q, then {0y (¥)Q;} is the sequence constructed starting with oy (y)Qo = oy (y)0.
We thus conclude

Q(’y)LQ — U Q(,y)IQi — UIQ(V)Q:‘, = Leme
i=0 i=0
We are done by letting the geodesic ray o€ : [0, o) — C be the extension of the geodesic segment
72 : [0,1] — C parameterizing L2. Consequently, we have constructed a oy (7 (Y))-equivariant
map
OB 79
from C to a family of pairwise parallel geodesic rays in C.
The above construction shows that oy (71 (Y)) fixes the equivalence class [L2] of geodesic rays.
This implies that the action of oy (711 (Y)) on C fixes a point at infinity. It contradicts with Assumption
(A), and we prove the uniqueness assertion. m|

2.8. Pluriharmonicity. —
Definition 2.20 (Pluriharmonic maps). — Let X be a complex manifold. A locally Lipschitz map
u: X — A(G) is pluriharmonic if u oy : D — A(G) is harmonic for any holomorphic map
v :D— X.

We will prove that in order to establish the pluriharmonicity of a harmonic map u to the Euclidean
building, it is sufficient to verify it over the regular set of u.

Lemma2.21. — Letu : U =D" — A(G) be a harmonic map with respect to the standard Euclidean
metric on U = D", If 30u = 0 on the regular set R(u), then u is pluriharmonic.
Remark 2.22. — Note that if x € R(u), we can select a neighborhood Q.. of x and an apartment A

such that u(€,) ¢ A. Our assumption implies that, upon identifying A ~ RY the map u : Q, — RN
is smooth and satisfies ddu = 0.
Proof. — Since pluriharmonicity is a local property, we are free to shrink U and localize around any
given point. We first establish the following claim: if D < U is an embedded holomorphic disk, then
the restriction of # to D is holomorphic.

After possibly shrinking U, we can choose an admissible coordinate system (U; 71, 22, . . . , Z) such
that D = (zp =--- = z,, = 0). Denote z, = (z2,...,2,) and let

D% :=D x {z,} ~D.

Recall that the singular set S(u) of u has Hausdorff codimension at least two by Lemma 2.10. It
follows from [Shi68] that, for almost every z. € D!, the Hausdorff dimension

(2.16) dimg(S) = 0,

where S%* := S(u) N D*. Let u,, = u|pz and R* = R(u) N D%*, where R(u) denotes the set of
regular points of u.

Let z. be such that (2.16) holds. Let Q C R%* be any Lipschitz domain such that u, (Q) Cc A
where A =~ RY is an apartment of A(G). Let IT : A(G) — A be the closest point projection map
into A. The differential equality ddu = 0 is the first variation formula for u,, : D* — A ~ RY and
thus E*=+[Q] < EV[Q] for any comparison map v : & — A. For a comparison map v : Q — A(G)
not mapping into A, we have E“=[Q] < EM°V[Q] < EV[Q] since the projection map IT is distance
decreasing. This implies that u,, is a harmonic map when restricted to the regular set R%*.

We now show that u,, is harmonic as a map from D%*. Let v : D* — A(G) be a harmonic map
with the same boundary values as u, . Since both u,, and v are smooth harmonic maps in D%\ $%, the
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function d?(u,_,v) is subharmonic in D%\ S% (cf. [KS93, Remark 2.4.3]). By (2.16), for any j € N,
there exists a open cover {B,, (pk)}kN=1 of §% such that Zf{vzl rg < % Foreach k = 1,...,N, let ¢
be a smooth function on D* satisfying the following properties: 0 < @i < 1, ¢y is identically equal
to 0 in B, (zk), ¢k is identically equal to 1 outside Bo,, (zx) and [Vi| < % Let¢; = H,’(V:lgok. For
any smooth function n > 0 with compact support in D%, we have

dz) A d
0 < [ opadun LS
Dz*
idz) A d dz) A d
@i = —/ 6,V - Vd? (uz,, v) == —/ 1V, - Ve (., )
D3+ Dz*

Because the Lipschitz constants of u,, and v are bounded in the support of 7,

N N o)
V1< ) 1Verl < )° —
k=1 =1k

and the support of ¢y is contained in a disk of area (2 )? , there exists a constant C > 0 that can be
chosen independently of j such that

. — N . _

idz1 ANdZ; idzy Ndzy
/nwj-vf(ua,v)— < §/ Vil IVd? (ug,, v)| —————
Dz 2 = /D= 2

M=

2 Cr
sup  [Vd*(uz, (2),v(2)] - — - m(2r7) < —.
—1 zesupp(17) s J

x~

Thus, letting j — oo in (2.17), we obtain
0< —/ Vi VP (u, vy N3
DZ* * 2
In other words, d?(u_, v) is (weakly) subharmonic in D%. Since d?(u;,,v) = 0 on dD?, the maximum
principle implies d?(u,,,v) = 0 in D%. Thus, u,, = v and hence u,, is harmonic for a.e. z, € D"~ !
Since the uniform limit of harmonic maps is harmonic, u,, is harmonic for all z, € D. This completes
the proof of the assertion.

Now let ¥ : D — U be a holomorphic map and C be the set of critical points of . There is a
neighborhood V of any z € D\C such that ¢ |y is an embedding. The composition u o |y is harmonic
by the above assertion. Thus, u o ¥ is harmonic in D\C. Letting v : D — A(G) be a harmonic
map with the same boundary values as u, we can use the same argument above to prove d?(u,v) = 0.
Hence u is harmonic, and the lemma is proved. m|

2.9. Existence of pluriharmonic map from quasi-projective surfaces. —
Theorem 2.23. — Let (X,X) be a log smooth pair with dim X = 2. Let L be a sufficiently ample
line bundle on X. Let G be a semi-simple algebraic group over a non-archimedean local field K.
Assume that o : 71(X) — G(K) is a Zariski-dense representation, and that C C A(G) is a non-empty
minimal convex o(r1(X))-invariant closed subset (cf. Lemma 2.2).

Fix a Kdihler metric g on X of Poincaré type as described in Section 1.3. Then there exists a o-
equivariant harmonic map i - X — C, where ¢ is considered as a representation m1(X) — Isom(C)
as defined in (2.1), such that the following holds:

(1) The map ii is pluriharmonic. .
(2) The map i has logarithmic energy growth with respect to (X, L).
(3) Properties in Items (1) and (2) uniquely characterize this map i.

Proof. — 1If o(m1(X)) is bounded, then o(m;(X)) fixes a point P € A(G), allowing us to define
ii(x) = P forany x € X. Therefore, we assume that o(m1(X)) is unbounded. In this case, C must also
be unbounded. Otherwise, by the Bruhat-Tits fixed point theorem, C would have a barycenter that is
fixed by o(71 (X)), contradicting our assumption that o(7r; (X)) is unbounded.

The existence of a p-equivariant harmonic map

(2.18) i:X—> CcAG)
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follows from [DM?24a]. Indeed, the closed unbounded convex subset C C A(G) is an NPC space.
Then [DM24a, Theorem 1] asserts that there exists a p-equivariant harmonic map i : X — C. Letu
be its corresponding section (cf. Section 2.2).

Proof of (i). The harmonic map i is in fact a pluriharmonic map. We defer the details of this proof to
Theorem C in Appendix A. m|

Proof of (ii). As dimc X = 2, it suffices to check that for any s € U with U defined in (2.11),
us := uly, has logarithmic energy growth, where ¥; := s71(0)and Yy :=Y, N X. Let p € 2NY,. Since
Y; + X is a normal crossing divisor, p is a smooth point of X. By [DM?24a, Theorem 6.6], there exists

an admissible coordinate neighborhood (U; z1, z2) centered at p, and a positive constant C such that
UNX=(z;=0)and

ou 2 L3 1 \idz AdZ idz A d7
2.19 ()| -2 122 A 2 <,
@19 / (‘azl S I FaET) 2

D*xD

where L, is the translation length of o(y) with y € 1 (X) corresponding to the loop 8 — (re'?,0).
Claim 2.24. — There is a positive constant Cy such that

(2.20)

ou "
—(z1,22)| £ Co, VY(z1,22) €D} xD;.
(912 2 2

Proof. — By Definition 2.7, we have

L2 1 7o . do 2 r 27| Qu , 2
r - < b i0 ) <« / il i0 4o
2 r ~ 2nr (/0 Bﬁ(re 22) r ) - 277( 0 071 (ret™, z2)
2r 2
0 .
2.21) < / % (16l 2)| rag
0 6Z1

for any zp € D and r € (0, 1). Here the last inequality follows from the Cauchy-Schwarz inequality.
Thus, (2.19) and (2.21) imply that

(2.22) 0< /

r1.1m

ou 2 idzy Ndz L2 r
—(z1,22) et —ylog—2 < C(zp), forae.z; €D,
071 ri 2

2 2

where C(z;) is a non-negative integrable function defined on D .

2
We will next show that, we can replace C(z,) in (2.22) by a positive constant Cy that depends only
on o(7y) and the Lipschitz constant of u|spxp. Indeed, [DM23a, Theorem 3.1] and (2.22) imply that
for each z,, the map z; — u,, = u(zy,z2) is the unique Dirichlet solution for the boundary value

Uz, | oD, and that the constant Cy depends only on the translation length L, and the Lipschitz constant
2

of ug, . Here we are using the fact that the isometries of A(G) are always semisimple when G

oo,
2

is semisimple by Lemma 2.6. Since u is locally Lipschitz, the Lipschitz constant of u Zz| | has a

oD
uniform bound for all z; € D 1 Hence, the choice of Cy can be made independently of z,. Thé lower
semicontinuity of energy then implies that (2.22) with C instead of C(z;) holds for all z, € D 1 (not
justa.e. zp); i.e.

(2.23) 0< /

.

ou

2. _ 2
idzy N dZ L
a—(m,zz) — = X

21

ra
- — < Cpy, Vzp € Dy.
2 2r Ogrl_ 0, V22 3

Since for each z; € D, u,, is a harmonic section of logarithmic energy growth, the proof of [DM?24a,
Lemma 4.1] implies (2.20). For the sake of completeness, we summarize this argument here. Let
22,2, €D ! and

020,25 (21) = d(ii(z1, 22), (21, 23))-
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Since u, is harmonic for each z», 6?2 2 is a continuous subharmonic function defined in D* (cf. [KS93,
%2

Remark 2.4.3]). Since u, and u,; have logarithmic energy growth, by [DM23a, Remark 3.12], one
has

\zligo .z (21) eloglzi] = -
1

Thus, 6?2 ., extends to subharmonic function on D 1 (cf. [DM23a, Lemma 3.2]). We can apply the
2.2,
maximum principle to conclude that

(2.24)

ZZZ

(21) < Sup 52 48 < A’lzp - 252, Vz1 € D
2

where the constant A can be chosen independently of z2,z§ e D 1 since @ is locally Lipschitz
continuous. This implies (2.20). m]

Consider a local trivialization of L|yy ~ U X C, and let sy € O(U) denote the image of the section
s under this trivialization. Define

wi =21
®:DXxD — d(DxD), d(z4, = , , .
— O( ), ®(z1,22) = (Wi, wa) { wa = su(21.22)
The fact that ¥, N U = sUl (0) intersects with (z; = 0) transversely implies that ‘%U ~(21,22) # 0

for (z1,z2) sufficiently close to (0,0). Thus, after shrinking U, we can assume that ® defines a
holomorphic change of coordinates in U. Define a holomorphic function n(wy, w,) by

~ 1 =wy
(D 1 wi, w = Z1,22), ’
(wi,w2) = (21,22) 22 = n(wi, wa)

Note that w; — (wi,n(wy,wz)) defines w; as holomorphic coordinate of the Riemann surface

s7H(w2).
Denote

uwz(wl) = M(Wl, U(Wl, WZ))

Whenever u(wy,n(wy, wy)) is a regular point (cf. Definition 2.9 and Lemma 2.10), we apply the chain
rule to obtain

dutyy,
dW]

ou ou o
W) = = (wia g (W1 w2)) + o (w1 (W1, W) e (w1, w2).
071 07 owq

Since %(wl, w2)| is bounded, the estimate (2.20) implies that there exists a constant C > 0 such
that

duyy, 2
dmt (w1)

2
(2.25) +C‘8_M(W1,TI(W1,W2)) +C.
022

’j_u(wla n(wi, wa))
21

Since the regular set R(u) of u is an open set is of full measure, ®(R(u)) is also an open set of full
measure. Furthermore, since u locally Llpschltz continuous, the right hand side of (2.25) is a bounded

function. Thus, we can subtract 27r m |2 from both sides of (2.25) and integrate over D}, x D for
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some small &€ > 0 such that ®~!(D, xD,) D% X D% to obtain

/ ey )2 Ly 1 \idwi AdWwy  idwy A di,
wil = =X
dwi V| T 2 w2 2 2
DiXDe
ou 2Ly 1 \idwi Adwy  idwa A dins
< a_ ) ) - A A
< / (311 win(wi,wa))| = 5 e > >
Dy xDg
0 idwy A dw idwy A dWw
+C / —M(Wl,ﬂ(wl,wz)) SR AL LE Y
072 2 2
DixDg
/ ’au( )2 L2 1 \|dsy P idzi A dz | idza A dZ
= — Z ’Z —_——
gz Y x|z | 2 2
O~ (D xDy)
du dsuy[*idzy AdZy idza A dZ
+C —(z1, A +C.
/ 922 || 5z, 2 2
@~ (D XDs)
2
Since aas—z‘zf is bounded, (2.19) implies that the first integral on the right hand side of the above

inequality is finite. By (2.20), the second integral on the right hand side is also finite. Thus, we
conclude that for a.e. wp € Dg,

/

D

duyy,
dwq

(w1)

_§|W1|2 5 < C(wy).

2 L%/ 1 )idWl/\dﬂ/l

We can now proceed as before (cf. from (2.22) to (2.23)) to show that C(w;) can be replaced by a
constant C independent of w; i.e. there exists a positive constant C such that for every w, € D, and
0<r; <ry<eg, wehave

(2.26) 0< /

D

2 idwi A dwq

Outyy, o
2 2n grl -

(9W1
.12

Note that the lower bound of 0 follows from (2.21). Applying (2.26) with w, = 0, we conclude that
uo = us has logarithmic energy growth in the sense of Definition 2.15. m|

Proof of (iii). To prove the uniqueness assertion, let v : X — C be another o-equivariant
pluriharmonic map into C of logarithmic energy growth with respect to (X, L). For any g € X, there
exists a section s € U(g) with U(q) defined in (2.12). We define gy, := 0|, (v,)- By the definition of
U(g) and Theorem 2.14, gy, (71 (Ys)) = o(m1(X)) and thus gy, does not fix a point at infinity of C.
Consider the sections of the fiber bundle X X o C — X defined by the pluriharmonic maps « and v,
and denote their restrictions to Y by uy, : Y5 — ?s Xoy, Cand vy, 1 ¥ — I~7s X oy, C. Since Yy is a
Riemann surface, the pluriharmonicity of # and v implies that uy, and vy, are harmonic sections, and
have logarithmic energy growth by Definition 2.15. By the uniqueness assertion of Lemma 2.18, we
conclude uy, = vy,. Since ¢ is an arbitrary point in X, we conclude u = v. O
The proof of the theorem is accomplished. m|

2.10. Proof of Theorem 2.1. —

Proof of Theorem 2.1. — The proof is organized into five steps. In the first step, we construct a map
i:X— AG) through an inductive process. Moving onto the second step, we establish that such # is
locally harmonic with respect to the Euclidean metric. In the third step we prove the pluriharmonicity
of &i. Subsequently, in the fourth step, we establish that i is harmonic with respect to any Kéhler
metric on X. Finally, in the last step, we show the uniqueness of .

Step 1: We prove the existence of u. Consider the following assertion:
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(x) Let C be a non-empty minimal closed convex o(m;(X))-invariant subset of A(G) introduced in
Lemma 2.2. Let L be a sufficiently ample line bundle on X. Then there exists a p-equivariant
pluriharmonic map i : X — C c A(G) of logarithmic energy growth with respect to (X, L).
Moreover, such map u is the unique p-equivariant pluriharmonic map into C of logarithmic
energy growth with respect to (X, L).

Initial Step. The statement () is true for dime X = 2 by Theorem 2.23.

Inductive Step. We assume (x) whenever dimgc X = 2,...,n— 1. Now let dim¢ X = n > 3. For each
section s € U with U as in (2.11), gy, (71(Ys)) = o(71(X)) by Theorem 2.14. Thus, the inductive
hypothesis implies that there exists a oy, -equivariant pluriharmonic map of logarithmic energy growth
iy : ﬁ — C.
Denote the associated section by ug : Yy — ?S X oy, C which can be viewed as a map
ug i Yy — X X o C

by (2.6).
Claim 2.25. — For g € X and sy, s, € U(q) with U(q) defined in (2.12), we have us, (q) = us,(q).
Proof. — Fori=1,2and g € X, we define U(s;, g) as follows:

U(si,q) = {s € U(q) | Y, transversal to ¥;, and = U ¥; UY,, is normal crossing}.

By Lemma 2.12, U(s;, g) is a non-empty Zariski open subset of U(g). This implies U(s,q) N
U(s2,q9) #+ .

Fix s € U(s1,9) N U(s2,9). Lett: ¥, NYy — X be the inclusion map. By Theorem 2.14, we
know that 1 (¥, NYs) — m1(X), m1(Ys) — m1(X) and 7y (Y;,;) — m1(X) are all surjective. By the
inductive hypothesis, there exist pluriharmonic sections

us Yy > Yy Xop C and uy, 1 ¥, — Y, X oy, C.

which are of logarithmic energy growth with respect to (¥;, Lly) and (Y, Lly ) respectively. By the
uniqueness assertion of the inductive hypothesis, the restriction maps

”S|Ys,ﬂYs Yy, NYy — YT;TYS XQYsian C
and -
usi|Ysian : Ysi nY, — Ys[ NYs XQYsmYs C.
defined in (2.5) are in fact the same section. Since g € Y; N Yy, we conclude u, (q) = us(q). O

Therefore, by Claim 2.25, we can define
u:X — XXQ C, u(q) :=us(q) for s € U(g).

To complete the inductive step, we are left to show that u is a pluriharmonic section of logarithmic
energy growth with respect to (X, L), and moreover is unique amongst such pluriharmonic sections
of X X, C — X.

Step 2: We prove that u is locally harmonic with respect to the Euclidean metric. Let T := |L|**~1
and let 7° be the Zariski open subset of 7" defined in Proposition 2.11. We first apply Proposition 2.11
to prove the following:

Claim 2.26. — For every xy € X, there exists a coordinate system (U z1, . . ., 2,) centered at xy such
that for everyi = 1,...,n and every fixed w := (21, ..., 2i—1>Zi+l>- - -»2n) € D" the disk

DW = {(Zl’-' e 3 Zi—15%5 Zitls - - "Zn) : |Z| < 1}

is contained in some complete intersection H\N- - -NH; _{NH; 1N - -0H,,, where (Hy, ..., H;_1, Hiy1, .
Te.

Proof. — To prove Claim 2.26, we fix so € H°(X, L) suchthatx, ¢ (so = 0). By Proposition 2.11.(ii),
we can find s1, . .., s, € H*(X, L) such that

(a) the hypersurfaces Yj,, ..., Y, are smooth and intersect transversely, where ¥;, := si‘1 (0).

... H,) €
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b X5, 751 + X is normal crossing.
(©) xo€¥, N...N0Y,.
Define u; := j—(‘) which is a global rational function of X and regular on some neighborhood U of x.
After shrinking U properly, the map
p:U—->C"
x = (U1 (x), uz(x), ..., un(x))

is biholomorphic to its image ¢(U) = D”. In particular, this defines an admissible coordinate system
(U;z1,...,2zn; @) centered at xg. Fix any i € {1,...,n}. Forany ¢ = ({1,..., -1, vl .- &) €
D", the disk

D¢ = {({1,- s im1: 2 Gints - . Gn) € DY | 2] < €}
is contained in
Un(zi=40=00n0-N(zi-1=6i-1=0)N(zis1 = Lis1 =0) N+ - N (2 = £ = 0).
After possibly shrinking &, for any ¢ € U, the divisor E;({) := U N (z; — {; = 0) in U coincides with
(sj=¢jso=0)nUforeach je{l,...,i—1,i+1,...,n}, and we have
(?Sl—§150"" ’Zi—l_giflso’z‘i+l_gi+lso"” ’?Sn—éfn,so) eT”.

By Item (b), we can shrink & > 0 further such that the divisor )’ ;; £;({) + £ N U remains a normal
crossing divisor for any £ € D"~!. Claim 2.26 follows after composing ¢ with the rescaling:

n n
D, —-D
<1 Zn
(CTTIY % W= [ I
& E
Thus, for any w = (21,...,2i-1, Zi+1, - - - Zn) € D"7!, the disk D,,, is contained in the curve

Rw = YSI_ZISO n---N Ysi—l_zi—ls() N Ysi+l_zi+150 n---N st—anO-
The claim is thus proved. O

According to Proposition 2.11 and Claim 2.26, for any w = (21, . .., Zi—1, Zi+1» - - -» Zn) € D" 1 we
can define a holomorphic map

y:Dvl 7
w = (Ysl—(flso’ e ’Yfi—l_.{i—ls()’ YSi+1—{i+1SO’ T st—énso) .

Let 7 : & — T be the universal family of complete intersection curves in X as defined in Propo-
sition 2.11. Consider the base change %’ = % xy D"! — D" of % over D"~! via v. By
Proposition 2.11, the family %’ — D"~ is topologically trivial, with R,,, denoting the fiber over each
we Dl

We now proceed with the proof that u# is harmonic with respect to the Euclidean metric on D".
The first step is to show that, after shrinking U if necessary, u is Lipschitz continuous in U. Fix
W = (21« vvsZimlsZitls---52n) € D"~!. The restriction of u to R,,, denoted as u,,, is the unique
harmonic section

Uyt Ry — Ry Xor,, C
where og, = 0o (tg, )« With tg,, : Ry, = X the inclusion map. We endow R,, with a conformal
,,,,, 0) is the conformal hyperbolic metric on Ry :=

To estimate the local Lipschitz constant of u,,,, we recall its construction in [DM?23a]. The first step
is to construct a locally Lipschitz og, -equivariant map k : R, — C using [KS93, Proposition 2.6.1].
Let y1, ..., be the generators of 71 (R,,) and let

.....

Fix P’ € A(G) and let 6’ = §(P’). The Lipschitz constant L(x) of k at x is bounded by
L(x) <C¢
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where C depends on the metric h,,. As remarked in the last paragraph of the proof of [KS93,
Proposition 2.6.1], C can be chosen independently of #,, since h,, has sectional curvature bounded
from below.

In [DM23a], we construct a prototype map, i.e., a og,,-equivariant map v : R,, — A(G) that
is equal to k away from disks containing the punctures and equal to the Dirichlet solution on the
punctured disks with boundary value given by k. In this way, we construct a locally Lipschitz map v
with controlled energy towards the puncture. The energy of u away from the punctures is bounded by
the energy of v away from the punctures. Therefore, the local Lipschitz constant of u,, depends on the
local Lipschitz constant of v which in turn depends on the local Lipschitz constant of k. In summary,
the local Lipschitz constant of #,, depends only on ¢’.

According to Proposition 2.11, #’ — D"~! is a topologically trivial family such that R,, is the
fiber over w. Hence there exists a diffeomorphism ¢,, : R,, — Ro and

(L‘Rw)* = (L’Ro)* o (Pw)s-
Thus, the Lipschitz constant of u,, for w € D"~! can be bounded uniformly. Thus, by shrinking U if

necessary, we may assume that the Lipschitz constant of u along the disk D,,, foranyi € {1,...,n}and
weD"lis uniformly bounded by a constant C. Therefore, if z = (z1,...,2,),w = (W1,...,Wy) €
U, then
d(u(z),u(w)) <d(u(z1,22,23, -, 2n) U(W1,22,23, . . . Zn))
+d(u(wi,22,23 ..., 20), u(W1, W2,23 ..., 2,)) +--+
d(M(WI, WZ’ W3a ey Wn—l, Zn)’ M(Wl, WZ’ W3’ ceey wn—la Wn))

< Clzi —=wil +Clza = wa| + -+ Clz — wyl.
By Sedrakyan’s inequality, 2 (X, |z; — w,—l)2 < Y, lzi — wi]?, and thus
2 (u(2), u(w)) < C*n (|z1 T wn|2) = Cllz-wl’, Vzwel.

In other words, u is Lipschitz continuous in U.
We now prove that u is harmonic in U = D" with respect to the Euclidean metric on D". For the
proof, we will denumerate the n-number of disks that make up U and write

U=D"=D; x---xD,.

Here the notation is abusive and we emphasize that D; is not the disk in C of radius i as introduced in
Section 0.3. Furthermore, we denote D; to be the product of (n — 1) disks obtained by removing the
i-th disk fromD; X --- X D,,; i.e.

—

D; =Dy X:--XDj_1 XDjy1 X---xXD,.
Let dvoly (resp. dvolp) be the Euclidean volume form of D" (resp. ﬁ;). We use the coordinate
(Zl,...,Zn) ED[ X"'XDn andzi =Xx; + V—lyl' ED,’

for U.
Forany w := (z2,...,2n) € 15\1 the restriction of u to Dy ~ D X {w}, denoted as u,,,, is a harmonic
map. The energy density function |Vu,,|* of u,, is an L'-function defined on Dy ~ D; x {w}.
Following [KS93, §1.9], we have the identity

0 0
(2.27) Vu | = Iu*(a—)|2(~,W) + Iu*(a—)lz(-,W)
X1 Y1

as L' functions on D =~ Dy x {w} for a.e. w € TDZ For the sake of completeness, we prove (2.27)
here: For a fixed (y1,w), let I(y, w) = {x1 € R | (x; + V=1y;,w) € D"}. Following the notation
of [KS93, Theorem 1.9.6], we denote the energy density function of the 1-variable map u|1(yl,w) by
|u*(6%l_)|2 and call it the aixl—directional energy density function of u. By [KS93, Lemmas 1.9.1 &
1.9.4],

d*(u(xy, yr,w),u(xi +&,y1,w) _

. 9
gi% = = |u*((9—XL)| (z1,w), forae.xi €Iy w)-
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Similarly, for a fixed yi, let I, = {x; € R | x; + V=1y; € D;}. Following notation of [KS93,

Theorem 1.9.6], we denote the energy density function of the 1-variable map u,,, | 1, by | () ( Bixl) 2.
By [KS93, Lemmas 1.9.1 & 1.9.4],

d? V1), +e&, )
(e (1, 31) ZMW(M &) _ |(uw)*(a—)|2(zl), forae.x € Iy, anda.e. w € D;.
Xi

lim

e—0 &

Since u(xy, y1, w) =ty (x1,y1) and u(x; + &, yl,w) = u (x1 +&,y1), we conclude that
|u*(aixi)|2(z1,w) [(tyy ) ( )| (z1) as L'-functions for a.e. w € D;.
Similarly,
|u*(aii)|2(zl,w) [ (try ) ( )| (w) as L'-functions for a.e. w € D1

By [KS93, Theorem 2.3.2 (2.3vi)],

9 = L) G + 0. ()P

Thus, (2.27) follows from the above three identities.
For notational simplicity, for each i € {1,...,n}, we will now denote

6_”2-_ |u (i)|2 6_”2
8xi B Bxi ’ (‘3y,-

Let v be the unique harmonic map in U with boundary values equal to those of u. We have a similar
identity to (2.27). More precisely, for any i € {1,...,n} and w € D;, we have

Vv P = |u*<5%>|2<-,w) + 'V*(aiyl)'z('”)

(2.28)

= |u.

as L' functions on D; =~ D; x {w} forae.w € ﬁ We shall use the same notation for v as in (2.28).
Applying the Fubini-Tonelli Theorem, we express EV[U] and E*[U] as a sum of n-terms as follows:

2
E'[U] = Z / REm 6yl dvoly
B Z/ /8_v N ov lel/\le Vol
= ]]’)Yl D; 8)6,‘ (9yi 2 %0

n . -

dzi Ndz;i |\ —
2 :'[\ (/ |VVw|21ZlTZ1) dvoly,
— JD; \JD;

i=1

and
& oulr | oul?
E“[U] = dvol
] Z/Dn axi| oy T
B Z/ / oul® |ou ldzl/\dzl Vol
B ox; 6yi 2 %0

dzi A dZ;
Z/ ( u, |25 AL . ¢ )dvolo.

Assume EV[U] < E*[U]. Then there exists some i € {1,...,n} such that

dzi Nd idz; Nd
/ /szu d010</ /szu dvolo.
5 \Jo; 2 5 \Jo, 2

Thus, we conclude that there exists a subset Z of D; with positive Lebesgue measure such that for any

wo = (Cl’ e Cim15,Cit 15 - - ',Cn) € Z>
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we have

idz N dZ idz N dzZ
[ 1P [, PR,
D; D;

i i

This contradicts that u,,, is a harmonic map. Thus, E“[U] = EV[U] and u|y = v is harmonic with
respect to the Euclidean metric on D".

Step 3: u is pluriharmonic. Since u is locally harmonic with respect to some Euclidean metric, the
set S(u) of singular points of u is a closed subset of X of Hausdorff codimension by Lemma 2.10.

Let p € X\S(u) and P C T;’O(X ) be any complex 1-dimensional subspace. By Proposi-
tion 2.11.(ii), there exists some (H1,...,H,_1) € T°suchthatp € HiN...NH,_1and H|N...NH,,_;
is tangent to . Write R = Hn..NnH, jand R := ﬁ\z. By the construction of u, its restriction
u|g is the unique pluriharmonic section ug : R — R X oz C of logarithmic energy growth. Thus, we
have

d9|pu(p) = ddur(p) = 0.

Since p is an arbitrary point of X\S(u), this proves that ddu = 0 over X\S(u). By Lemma 2.21, u is
pluriharmonic of logarithmic energy growth with respect to (X, L).

Step 4: u is harmonic with respect to any Kdhler metric w on X. Since harmonicity is a local property,
it is sufficient to prove this claim locally. Pick any xg € X. Let (U;zy,...,z,) be the coordinate
neighborhood of xq introduced in Claim 2.26. Since u|y is harmonic with respect to the Euclidean
metric on U, the singular subset S(«) has Hausdorff codimension at least two. Let v : U — C be the
unique harmonic map in U with respect to w with boundary values equal to those of u. Since u is
pluriharmonic, the restriction u|¢ s(,) is harmonic with respect to the metric w. Thus, the function
d*(u, v) is subharmonic when restricted to R () N R(v). Since d*(u, v) is bounded and S(u) U S(v)
is a closed subset in U with Hausdorff codimension at least two, d*(u, v) is weakly subharmonic. By
the maximum principle, and the fact that d%(u,v) = 0 on dU, it follows that d*(u,v) = 0 on U. This
proves u = v, meaning that u is harmonic with respect to w.

Step 5: u is unique. LetV : X — C be another o-equivariant pluriharmonic map of logarithmic
energy growth, and v : X — X X o C be its corresponding section (cf. Section 2.2). For g € X, let
s € U(q). Therestriction vy, of v is a pluriharmonic section of logarithmic energy growth with respect
to (¥, Lly). By the uniqueness assertion of the inductive hypothesis, we conclude that uy, = vy,.
Since q is an arbitrary point in X, we conclude that u = v. This proves the uniqueness of u. m|

3. Energy estimate for pluriharmonic maps into Euclidean buildings

In this section we will complete the proof of Theorem A.

3.1. Local energy estimate at infinity. — In this subsection we prove Theorem A.(iii) (cf. Propo-
sition 3.2). Let X, X, L, = and o be as in Theorem 2.1. Set T := |L|*"~1) and let T° be the Zariski
open subset of T defined in Proposition 2.11.

Lemma 3.1. — Any smooth point xg in the divisor ¥ has an admissible coordinate neighborhood
(Us;z1, ..., 2n) centered at xo with U N Y = (z1 = 0) such that for any z, = (22, ..., z,) € D"\, the
transverse disk z — (z, z.) is contained in some complete intersection %Z* =H;N---NH,_|, where
(Hy,...,Hy_1) €T". _
Proof. — Since xg € X is a smooth point, by Proposition 2.11, we can choose s3, ..., s, € HO(X, L)
such that

(a) (Zz, .. ,73,,) € T°. In particular, the hypersurfaces 732, .. ,Zn are smooth, where Ys,. = si‘l(O).
(b) The divisor Z:’:z 1751. + X is normal crossing.
(© xe€¥,N...NY,.
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Pick some s; € H(X, L) such that xo ¢ (s; = 0). Let u; := j—; Then for any i € {2,...,m},

u; is a rational function on X that is regular on some neighborhood U of xo. After shrinking U if
necessary, we can assume that there is a holomorphic function v € ©(U) such that dv(xg) # 0 and
>NU=(v=0). ByItem (b), one has dv A duy A ... A du,(xo) # 0. After possibly shrinking U,
we may assume that

(1) dvAduy A...ANdu,(x) #0forallx € U,
(2) The map

p:U—>C"
x> (v(x), u2(x), ... un(x))
is biholomorphic to its image ¢(U) =

Thus, the map ¢ defines an admissible coordinate neighborhood (U; z1, . . ., zx; ) of U centering at
xo. Forany £ := ({3, ...,4,) € D!, the transverse disk

Dy :={(2,42,...,4n) €Dy | 2] < &}

is contained in U N (up — & = 0) N ... N (u, — &y). The later is contained in (s — {os) =
0)Nn...N (s, —&us1 =0). Since T° is Zariski open in T, one can shrink & such that

(ZQ—QSO’ s ’st—énso) S
for each £ € D"~!. The lemma follows after we compose ¢ with the rescaling
Dn N Dn

&
(Z1yevr2n) P (Z—l,...,—").
g £
O
Proposition 3.2. — Let X, X, L, ¥ and o be as in Theorem 2.1. Let ii : X - A(G) be the o-
equivariant pluriharmonic map with logarithmic energy growth with respect to (X, L) constructed in
Theorem 2.1, and let u be its corresponding section. For any smooth point xy € X and an admissible

coordinate neighborhood (U; 71, ..., z,) centered at xo, as constructed in Lemma 3.1, there exists a
constant C > 0 such that

2
(3.1) ’5(21522’---a2n) < A? forany (z1,...,2,) € D*% XID)';_I, Vj=2,...,n,
J
0 2 Ly 1 1
(32) 0< / 222 zn)| dvoly, — =2 log - - Vol (D’:-l) <C, YO<r<-=,
D 1><D"1 aZ 2r r 2 2
%)
(3.3)
L2 1 2 L% 1 1
~ Y logr - Vol D" s/ IVul2,dvol,, < —=~ logr - Vol (D':— )+c, VO<r<-—
2 Dr lxDrlH 2 2 2
2 g
(3.4
Lil Vol (D! Vul?, dvol Lil Vol (D" ') +C, VO !
- Vol (D7) < < -5 -o( ‘)+, <r<-.
27'[ Ogr ( % ) _/]D;r’%XDrfll lep VO wp 271_ Ogr % r 2
b
Here
- wi=xr %dzi AdZ; (resp. wp ) is the standard Euclidean metric (resp. Poincaré-type metric

defined in (1.2)) on U* := U\Z, dvol,, (resp. dvol,, ) is the volume form of w (resp. wp) on U*,
and Vol (D'l’_l) is the Euclidean volume ofD’z_l.

(1\/70

- vy € m(X) is the element corresponding to the loop 8 — ..., 0) around the irre-

ducible component ¥ containing xo;
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— L, is the translation length of o(y) defined in Definition 2.7.

Moreover, the above energy fD D! [Vu|?dvol,, is finite provided that o(y) € G(K) is quasi-
r,5 1
S !

unipotent.

Proof. — In Theorem 2.1, we prove that i is harmonic with respect to any choice of a Kéhler metric
on X. By Theorem 2.8, i is locally Lipschitz continuous with respect to the distance function on X
induced by the metric w. Let A > 0 be the Lipschitz constant of i in ﬂ)}l (61]3)% X ]D% X e X D%).

Fix zo := (204, - - - » Zne)s Wa := (W0, ..., Wpa) € D”l‘l. Then
2

- N 1
2w (2) = d* (2, 2.), (2, wa)) < A%z — w.]* for |z] = R
Let R, and R,,, be the complete intersection curves in Lemma 3.1. Denote R,, := R, NX and R,,,, :=
Rw, N X. Letug_ and ug,, be induced maps as in (2.5) of the compositions of u and the inclusion
maps R,, — X and R, < X respectively. Letiig_ andiig, be the corresponding equivariant maps
from the universal covers to A(G) as in (2.5). By the construction of 7 in Theorem 2.1, iig_ and iig,,
are harmonic maps of logarithmic growth. Hence the function 61’% (2) = d*(u(z1, z+), u(z1, wy)) is
a continuout subharmonic function satisfying

lim 62 ,, (z) +eloglz| = —

20 ZWs

Thus, an argument used to prove (2 24) also proves

(3.5) (z) < A%zo—wi* VzeD?.
2

Z* Wi

It yields (3.1). .
By Theorem 2.1, i has logarithmic energy growth with respect to (X, L). By Definition 3.8, for
any fixed z, € D"~!, there exists a constant C > 0 such that we have
2
L? L2
Y 7 Y
(3.6) —Elogr < E"Rz [Dr,%] < —Elogr+C
for any r € (0, %) Such constant C in (3.6) depends only on L, and the Lipschitz estimate of iig,, on
6D%. Thus, C is uniform for any z, € D"*~!. Integrating (3.6) over z, € D"~! while noting
2 2

; ou |* V=Tdz A dZ
37 EM'RZ* D = —_— ,Z%) —— ,
(3.7) D, ,] /D]azl (2 %
r,i
we conclude (3.2).
Since
2 & loul
/ |Vul|?dvol, = / +Z —1 |dvol,,
DrlXD'f_l ID) 1 X r}— aZI =) az/
72 2 3 bl

the assertion (3.3) follows from (3.1) and (3.2).
Consider the Poincaré-type metric

V=1dz; A dZ &
Z#WLZV—MZM@.
k=2

|z112(log |z1]2)?

Denote by (P;;) and (Pif ) the components of this metric tensor and its inverse. Note that

Jdoul &N | oul
/ |Vu|i,Pdvole = / P | + E P/ |—1| |dvol,,
D, xDn-! D_; xD""! 0z1 — 0z;
rj r,% 1 J=2
2 2
2
ou

dvolwo.

—_—
0z |Zl|2(10g|21|2)2 Z 0z

2

A 1 XD’;_I
r =
2



PLURIHARMONIC MAPS INTO EUCLIDEAN BUILDINGS AND SYMMETRIC DIFFERENTIALS 25

Then (3.4) follows from (3.1) and (3.2).

To prove the last claim, it then suffices to show that L, = 0. Since the finiteness of local energy is
preserved under finite unramified covers, we can assume that o(y) is unipotent. Then there exists a
Borel subgroup B of G such that o(y) € U(K), where U is the unipotent radical of B. Note that U (K)
fixes a sector-germ of the standard apartment A, which means that there exists a Weyl chamber C" of
the apartment A such that if # in U(K), then u fixes x + C", for some x in A. In particular, o(y) fixes a
point y € A. Consider the minimal closed convex o(m;(X))-invariant subset C € A(G) constructed
in Lemma 2.2. By Lemma 2.3, the closest point projection map I1 : A(G) — C is a G-equivariant
map, which implies that o(y)II(y) = II(o(y)y) = II(y). By (2.3), this implies that L, = 0. The
proposition is proved. |

3.2. Logarithmic energy growth (II). — In this subsection we complete the proof of Theorem A.
We shall give a more intrinsic definition of logarithmic energy growth than Definition 2.15 (cf.
Definition 3.8).

Lemma 3.3. — Let (X,X) be a log smooth pair, L be a line bundle on X. Assume that V C |L| is a
linear system which is base-point-free. Then a generic hypersurface H in 'V is smooth and H + Z is
also simple normal crossing.

Proof. — We write ¥ = }", ¥; into sum of irreducible components. For I c {1,...,m}, denote by
2; = i er Zi, Which is a closed smooth subvariety of X. Then by the Bertini theorem, for each 1
with dim X; > 1, there is a Zariski open set V; of V such that every hypersurface H € Vj satisfies that
H and H N Z; are both smooth. Denote by V' := (; V; where I ranges over all subsets of {1, ...,m}
such that dim2; > 1. Then V’ is a Zariski dense open set of V. It follows that every hypersurface
H €V’ is smooth and H N X is smooth for each X; with dim X; > 1. This implies that H U X is also
simple normal crossing. m|

Lemma 3.4. — Let X, X, L, ¥ and o be as in Theorem 2.1. Let i : X — A(G) be the o-equivariant
pluriharmonic map with logarithmic energy growth with respect to (X, L) constructed in Theorem 2.1,
and let u be its corresponding section. Choose any smooth point xg € . Let (U, wy,...,w,) be any
admissible coordinate neighborhood centered at p such that UN X = (w; = 0). Then there exists a
positive constant C such that for any 0 < r < 5, and any w, := (w2, ..., wy) € D", one has

2

2. _ 2
dwi Ad L 1
w2 amL ——ylog— <C.
r

ou
i < —_— .
(3.8) 0< / ‘WI(W],W) 7 7

D

r,

Nl

Here Ly is the translation length of o(y) with y € m(X) corresponding to the loop 6
1 16’ 0)

ey Zn)
centered at p satisfying the properties therein, such that z; = wy. After shrinking U if necessary, we

may assume that there is a constant C > 0 such that for any j € {2,...,n}, we have
0z
|>—(wi,w)|<C
Bwl

for any (wy,w,) € U. Then by (3.1) and

ou ou 071 ou
+

— — . — j
Gy 71 = G GG D G z*) oo z*)+2 ~G1z)g

there is a constant C, > 0 such that
u ou
awl 6Z1

for any (wi,w,.) € U. Thus, (3.8) follows from the same argument used in the proof of Theo-
rem 2.23 (ii), replacing (2.19) and (2.20) with (3.1) and (3.2). We leave the details to the reader. O
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Lemma 3.5. — Let X, X, L, =, and o be as in Theorem 2.1. Let i : X - A(G) be the o-
equivariant pluriharmonic map with logarithmic energy growth with respect to (X, L) constructed in
Theorem 2.1. Assume that u : X\ — X is a birational morphism such that Hlu1(x) - uH(X) = Xis

an isomorphism and Xy = X1\~ (X) is also a simple normal crossing divisor. If L1 is a sufficiently
ample line bundle on X1, then ii also has logarithmic energy growth with respect to (X1, L1).
Proof. — Consider the linear system |u*L| on X. It is a free linear system as L is very ample. Note
that

HO(X1,u*L) = H'(X, . (u"L)) = H'(X, L ® p.(Og,)) = H'(X, L),
where the second equality is due to projection formula and the last equality follows from Zariski’s
main theorem 1,0y = Ox. It follows that

(3.9) pt HO(X, L) — H'(X,, pu*L)

is an isomorphism.

Denote 7 := |L|*("~1D and let T° be the Zariski open subset of 7' constructed in Proposition 2.11.
Similarly, we define 7} := |p*L|*"~1) and let T be the Zariski open subset of 7' such that, for every
(Hy,...,Hy-1) € T, the hypersurfaces Hy, . . ., H,_ are smooth, and the divisor Hy +- - -+ H,_ 1+
is simple normal crossing. By Lemma 3.3, one can show that 77 is a non-empty Zariski open subset
of T1. The isomorphism (3.9) induces an isomorphism i : 71 — T. Denote 7°° := T° Ni(T}). Itis a
non-empty Zariski open subset of 7. Moreover, by Lemma 3.3 along with the same arguments in the
proof of Proposition 2.11, for any x¢ € X, there exists (Hy,...,H,—1) € T°° such that

XOE§Z:H10'-'ﬂHn_1.

Denote R := R\Z. By Theorem 2.1, iig : R — Cisa ow-equivariant harmonic map with logarithmic
energy growth.
By our construction of 7°°, it follows that u*Hy, ..., u*H,_; are all smooth, and Z;fz‘ll M Hj+ %

is simple normal crossing. Thus, ﬁl = u*HyNn---Nu*Hy,_ is a smooth projective curve in X|.
Denote R; := ﬁl\zl. Then u|g, : Ri — R is an isomorphism.

We apply Theorem 2.1 again to construct another o-equivariant harmonic map v : X - Cof
logarithmic energy growth with respect to (X1, L{). By the same proof of Lemma 3.1, there exists an
admissible coordinate neighborhood (U; zy, . . ., zn) centered at xg with U N X1 = (z1 = 0) such that
the transverse disk z +— (z,0,...,0) is contained in Rl It follows from Lemma 3.4 that ¥ : R —C
is a pg-equivariant harmonic map with logarithmic energy growth. By Theorem 2.14, we know that
m1(R) — m1(X) is surjective. Therefore, og : 71(R) — G(K) also fixes C and does not fix a point
at infinity of C. By the unicity property in Lemma 2.18, we conclude that ug = vg where ug and vg
are defined in (2.5). Since xg is an arbitrary point in X, it follows that # = v holds over the whole X.
The lemma is proved. i

Proposition 3.6. — Let X| and X, be two smooth projective compactifications of X with ¥; := X;\X
a simple normal crossing divisor. Let Ly and Ly be sufficiently ample line bundles on X, and X
respectively. Fori = 1,2, let ii; : X — C be the unique o-equivariant harmonic map of logarithmic
energy growth with respect to (X;, L; i) constructed in Theorem 2.1. Then ity = iiy.

Proof. — Since X is birational to X», we can blow-up the indeterminacy of the birational map
X, --> X, to obtain a birational morphism X3 — X such that we have

/\

——————————— > X

Here u; and u» are both isomorphic over X. We may assume that 3 = X3\ X is also a simple normal
crossing divisor. Fix a sufficiently ample line bundle L3 on X3. By Theorem 2.1, there is a unique
o-equivariant pluriharmonic map i3 : X — C of logarithmic energy growth with respect to (X3, L3).
Then by Lemma 3.5, i#; = @iz = iip. The proposition is proved. O

Lemma 3.5 enables us to obtain the following energy estimate for the harmonic map.
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Proposition 3.7 (local energy estimate at each point). — Let X, X, L, ¥ and o be as in Theorem 2.1.
Leti : X — A(G) be the p-equivariant pluriharmonic map with logarithmic energy growth with
respect to (X, L) constructed in Theorem 2.1, and u be its corresponding section. For any holomorphic
map f : D — X such that f~1(X) c {0}, we denote by ur:D* — D Xpep C the induced harmonic
section of u o f defined in (2.5) and let uy : D* — C be the corresponding [*o-equivariant harmonic

map of uy. Then there is a positive constant C such that for any 0 < ry <ry < %, one has
L2 _ L2

(3.10) 2 log2 < ET D, ] < -2 log r + c,
2 ri ’ 2n

where L, is the translation length of o(y) withy € m(X) corresponding to the loop 6 +— f(%eie).
Proof. — We can shrink D such that f|p- : D* — X is an embedding. We can take an embedded
desingularization for the image C := f(ID) to obtain a birational morphism u : X; — X such that

(@ wp~'(T) =2 is a simple normal crossing divisor.

(b) w is an isomorphism over X.

(c) The strict transform C; of C is smooth, and intersects with X transversely. In particular,
xp := C; N X is a smooth point of X;.

Thus, we can take an admissible coordinate neighborhood (U 3205 Zn) centered at xy such that
UNZi=(z1=0andC; = (z2 =--- =2z, =0). Let fj : D —» X be the lift of f. Then we can
reparametrize D such that f;(z) = (z%,0,...,0).

By (3.8), there exists a positive constant C such that forany 0 < r; < rp < 2, one has
o Adz L2
(G.1D) 0< / —M(Zh 0,...,0) —Zl—ﬂlogr—zsc.
0z1 2 2n r

|,

Here L70 is the translation length of o(yg) with yy € m1(X) corresponding to the loop 6 +—

(re'? .,0). Since
2

duy, ‘2 k-1 00
— )| =kz"" —(Z",0,...,0)| ,
dz() 6Z1( )
then forany 0 < r; <rp < %, one has
__ diiy, V=1 d Adz i 2 \VZ1dzy A dz
Eufl[Drl’rz]zf hi ’ ZAdZ k/ i(z“ )’ N-ldu ndz

D :
ry,.r k .k
1-72 ryary

Letuy : D* — D* x fro C be the induced section of u o f] defined in (2.5). By Item (b), we have
us, = uy. The above equality implies

L3y - L3, 2
(3.12) k log < EY[Dy ] <k log + Ck~.
20 r1 2 ri

forany 0 <r; <rp < % For the loop v € m1(X) defined by 6 — fl(%em), the translation length L,
of o(y) is equal to kL,,. (3.12) implies (3.10). The theorem is proved. |

By Proposition 3.7, we can revise Definition 2.15 as follows.

Definition 3.8 (logarithmic energy growth (II)). — Let X be a smooth quasi-projective variety, G
be a semi-simple algebraic group over a non-archimedean local field K, and let o : 71(X) — G(K)
be a Zariski dense representation. A p-equivariant harmonic map i : X - A(G) has logarithmic
energy growth if for any holomorphic map f : D* — X with no essential singularity at the origin
(i.e. for some, thus any, smooth projective compactification X of X, f extends to a holomorphic map
f : D — X), there is a positive constant C such that for any r € (0, %), one has

L? L?
(3.13) —~Llogr < E¥[D ] <-—Llogr+C,

2n "2 2n

where L, is the translation length of o(y) with y € 71(X) corresponding to the loop 6 — f (1 e'?).
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In summary, we have the following result, which proves the second assertion in Theorem A.(i) and
Theorem A.(iv).

Theorem 3.9. — The pluriharmonic map i constructed in Theorem 2.1 has logarithmic energy
growth in the sense of Definition 3.8. Moreover, if f : Y — X is a morphism from another smooth
quasi-projective variety Y, then for the sectionuy : Y — Y x f+o C defined in (2.5), the corresponding
map uy is a f*o-equivariant pluriharmonic map of logarithmic energy growth. Moreover, uy is
harmonic with respect to any Kdihler metric compatible with the complex structure of X.

Proof. — The first assertion follows from Proposition 3.7. The fact that uy is pluriharmonic can
be deduced from the definition of pluriharmonic. Furthermore, consider any holomorphic map
g : D* — Y with no essential singularity at the origin. Then f o g : D* — X has no essential
singularity at the origin.

Denote by L, is the translation length of f*o(y) with y € m(Y) corresponding to the loop
60— g(%ei 9). Then L, is the translation length of o(y”) with y" € 71 (X) corresponding to the loop
0 fo g(%eig). By (3.10) there is a positive constant C such that for any r € (0, %), one has

L2 L?
——Llogr < E“s[D, ] < -=Llogr+C.
2r 2r

"2
The harmonicity of u y with respect to any Kahler metric w can be established using the same method

in Step 4 of the proof of Theorem 2.1. O

4. Pluriharmonic maps and logarithmic symmetric differentials

Let X be a smooth quasi-projective variety and and let G be a semisimple algebraic group over a
non-archimedean local field K. Assume that o : 71(X) — G(K) is a Zariski dense representation. By
Theorem A, there is a p-equivariant pluriharmonic map # : X — A(G), that is locally Lipschitz and
has logarithmic energy growth. In this section we will construct logarithmic symmetric differentials
on X using this pluriharmonic map u. The construction we presented here is close to that in [Kli13]
(cf. [Eys04, Kat97,Zu096] for other slightly different construction).

4.1. Finite étale cover and logarithmic symmetric differential. —

Definition 4.1 (Galois morphism). — A covering map y : X — Y of varieties is called Galois with
group G if there exists a finite group G C Aut(X) such that y is isomorphic to the quotient map.
Lemma 4.2. — Let f : (X,Zx) — (Y, Zy) be a surjective morphism between two log smooth pairs
of dimension n. Assume that the restriction of f to X is étale and Galois, with Galois group G. If
HO(X, SykaY(log Yx)) # O for some positive integer k, then H(Y, Sym™Qy(logXy)) # 0 for
some positive integer m.

Proof. — Let X L X, ﬁ) Y be the Stein factorization of f. Then u is a birational morphism
onto a projective normal variety X, and the restriction of u over X is an isomorphism. We will
identify X; := u(X) with X abusively. By Zariski’s Main Theorem in the equivariant setting

(cf. [GKP13, Theorem 3.8]), f| is Galois with group G. Denote by Zi,ing the singular locus of Xy,
which is a closed subset of ¥ of codimension at least two. Let Y~ := Y\Z;mg and Y‘; = fl‘l (Y°).

Then Ycl) is smooth, and Xy = YT\X] is a smooth divisor in YT. Moreover, it follows from the
proof of [Den22, Lemma A.12] that at any x € X , there are admissible coordinate neighborhoods
(Qy;x1,...,x,) centered at x, with 2%, NQyx = (x1 = 0), and an admissible coordinate neighborhood

(Qy; 1, ..., yn) centered at fi(x), with Ty N Q, = (y; = 0), such that
4.1) fl(xl,...,xn)=(xi‘,x2,...,xn).

Let Z be the exceptional locus of x. Then u(E) is a closed subset of X of codimension at least
two. The closed subset Y := Ugegg.u(E) of X also has codimension at least two.

By assumption, there exists a non-zero P € H°(X, SykaY(log Yx)) for some positive inte-
ger k. Since u is an isomorphism over YT\Y, P induces a logarithmic symmetric differential on
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(X, 2}}1)&‘1’\]{-
rithmic symmetric differential Py € H(X, SykaY]’ (logZ} ). We define Q := []gei g"P, which

is a non-zero G-invariant logarithmic symmetric differential in H° (Y?, Symk|G|Q§<l> (log Z;l ), as

By the Hartogs theorem, such a logarithmic symmetric differential extends to a loga-

¢ (X1.55) - (X1.2%)

is an automorphism of the log pair (Y;, 23’(1) for any g € G. By the local description of f; in (4.1), Q
descends to a logarithmic symmetric differential

ReH° (70, SymlleQY(log 2y)l),

such that fl*R = (. Since 7\70 has codimension at least two, by the Hartogs theorem again, R extends
to a non-zero logarithmic symmetric differential in

H°(Y, Sym!“* Qg (log =y)).

The lemma is proved. |

4.2. Constructing logarithmic symmetric differentials. — Let X be a smooth projective compact-
ification of X such that ¥ = X\X is a simple normal crossing divisor. We fix a smooth Kihler
metric @ on X, and let w be its restriction on X. By Theorem A, i is harmonic with respect to
w. Letu:X — XX o A(G) be the corresponding section of i defined in Section 2.2. Recall that
|Vul|?, € LlloC (X) is the energy density function in section 1.2. By Remark 1.5, |Vu|2, is moreover
locally bounded as i is locally Lipschitz.

Fix now an apartment A in A(G), which is isometric to RY. Here N is the K-rank of G. Let
W c Isom(A) be the affine Weyl group of A(G). The vectorial Weyl group WY := W N GL(A) is
a finite group generated by reflections. Note that W = WY =< A, where A is a lattice acting on A by
translations. For the root system ® = {«1,...,a,} C A* — {0} of A(G), one has

{way,...,w'ay}t ={ay,...,ay} foranyw e W".
In other words, the action of WY on @ is a permutation. It follows that
4.2) {w'day,...,w'day,} ={dx,...,da,} foranyw e W.

Here each dq; is a linear real one-form on A.
For any regular point x € R(u) of u (cf. Definition 2.9), one can choose a simply-connected open
neighborhood U of x such that

— the inverse image n)‘(l (U) = ey U; is a union of disjoint open sets in X, each of which is
mapped isomorphically onto U by 7y : X > X.
— For some i € I, there is an apartment A; of A(G) such that u(U;) C A;.

Since @i is p-equivariant and G (K) acts transitively on the set of apartments of A(G), for any other
Uj, u(Uj) is contained in some other apartment A ;. For each j € I, we choose g; € G(K) such that
gj(A;) =A. Wedenote u; = g;ii o (7TX|U]-)_1 : U — A. By the pluriharmonicity of i, each ay o u;
is a pluriharmonic function on U, and thus day o u; is a holomorphic 1-form on U.

Lemma 4.3. — For each i, j € I, the two sets of holomorphic 1-forms {0a; o u;, . ..,da,, ou;} and
{0ajouj,...,0a,, ouj} coincide.

Proof. — Choose y € m1(X) such that y maps U; to U; isomorphically. Since i is o-equivariant,
one has o(y)ii o (nx|y,) ! =iio (ﬂxluj)_l, and thus

(4.3) uj =g;0(y)g: u;.

We write g := gjg(y)gi‘l € G(K). Then (4.3) implies that u; (U) ¢ AN g~'A. By [KP23, Corollary
4.2.25] and [KP23, Axiom 4.1.4 (A 1)], there exists w € W such that wx = gx forany x € AN g‘]A.
This implies that u; = wu;. We conclude that

{0ajouj,...,0amou;} ={0aiowu;,..., 00, owu;} ={0ajou;,...,0anou},

where the last equality follows from (4.2). The lemma is proved. O
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By Lemma 4.3, {dajouj, ..., 0a, ou;} defines a well-defined multi-valued holomorphic 1-form
on R(u), denoted by {wy, ..., wn}. Let T be a formal variable. Then we can write
m
4.4) H(T—wj) = T"+o T+ 40y,
k=1

such that o € H*(R(u), SykaX|7g(u)).

Proposition 4.4. — For any k € {1,...m}, oy extends to a logarithmic symmetric differential
HO(X, SykaY(log %)). Moreover, if il is not constant, there exists some k such that oy, # 0.

Proof. — By [GS92, Theorem 6.4], S(u) is a closed subset of X of Hausdorff codimension at least
two. Since u is locally Lipschitz, for any x € X, there are a neighborhood €, of x and a constant C,
such that |Vu|,, < C, on Q.. Note that there is a uniform constant Cy > 0 such that

(4.5) loklw < ColVul®  over  R(u).
Hence over Q, N R(u), one has
loklw < ColVulk < CoCk.

By the result on removable singularity in [Shi68, Lemma 3.(ii)], o extends to a holomorphic sym-
metric form in HO(X, Syka x), which we still denote by 0.

Choose any point x in the smooth locus of X. By (3.3) in Proposition 3.2, there is an admissible
coordinate neighborhood (U zy, . . ., z,) centered at x with ¥ = (z; = 0), and a constant C; > 0 such
that one has

(4.6)
2 2

L')’ 1 2 L'y 1 1
~ Y logr - Vol (D'}— ) < / |Vul2,, dvoly < —=~ log 7 - Vol (D’:— )+C, VO<r<-=
27T 2 Dr lXDr:_l 271' 2 2

’ 2

Here wo = V=13, %, dvoly is the volume form of wg on U* := U\X, and VOI(D;_l) is the

Euclidean volume of D"~!. Note that
3

okl < ColVult, over  R(u).

Thus, (4.5) implies that there is a constant C > 0 such that one has

2 1
—Clogrs/ lo|gedvolp < =Clogr+C, YVO<r<-.
D, ; xD"-! 2
!
On U*, we write 0% (2) = 2| 4=k Ta(2)dz?, where a = (a1, ..., a,) € N" with |a| := X', a;, and
dz? = dzf‘ -+ +dzy". Then 1, are holomorphic functions over U*. It follows that for each a, we have

1
/ |Ta(z)|%idz1/\dZ]/\---/\idan—Clogr+C, VO<r< =
D,  xD4! 2

2 2

We now prove that 7,(z) extends to a meromorphic function over U for each . We fix even m > 0.
Then

1
F(r) := / Izllm_llral%idzl AdZi A+ Nidzy Ndz, < —Clogr+C, Y0<r< 3
Dr’%xD’%'“
It follows that for any r € (0, %), we have
1

2 _ . 2
/ |21 [Tal Fidz1 A dZ) /\“‘/\len/\dzn:_/ tF(t)dt
D, ; xD%"! -

2

1
2 11
:rF(r)+/r2F(t)dt—§F(§)
: 11 1
< —Crlogr+Cr—C/ logtdt—EF(§)+(§—r)C.

r
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This yields

2 _ . _
/ lz1| Tl ®idzi AdZi A -+ Nidzy, A dz, < +00.
D xD!

2 2
km . .
By Lemma 4.5 below we conclude that z12 Tq, hence 7, extends to a meromorphic function over

D™. Thus, there exists some ¢ € Z such that 7,(z) = sz,,(z) such that b,(z) € O(U) which is not
identically equal to zero on X.
Take a point y = (0,y2,...,y,) € £ N U such that b,(y) # 0. Then for some € > 0 one has

|ba(z)|% > C3 over
Vi={(z1,....2n) € D*% xDT |zl <&z —yol <& .ooylzn —yul < &}
2
for some constant C3 > 0. We shall switch to the Poincaré-type metric wp defined in (1.2) on U* and
apply (3.4). By the construction of oy, we have
loklwp < ColVult,, over R(u).
Since
0% (Dlwp 2 [Ta(2dzalwp = ITa(@lz1** (log |21[7)>*,

then by (3.4), there exists a constant C4 > 0 such that one has

1 20420

2t~ & dlogt
C3V0I(D’1“1)/ LI L
2 , |log ¢t

20420 idZ] A le . _ . -
C3/ |z1]| % ﬁ/\ldzz/\dzz/\---/\ldzn/\dzn
VAD, | xD" |z11>(log |z11)

-1
23
2 1 1
4.7) < loklgppdvolyy < Cilog—+Cy, V. 0<r <.
VAD_| xD"-! r 2
73
202
If £ < —aj, then there exists & > 0 such that 1~ f > 2|log?|? for 0 < ¢ < . It follows that there

exists a constant Cs5 > 0 with

1 22aq

2t~ % dlogt
/ J?logzr—Cs, V O<r<e.
r |logr|?

By (4.7), we have
1
C3Vol (D’}—l) (log?r —Cs) < Calog—+Cs, ¥ 0<r<s.
2 r

for any 0 < r < &3, which yields a contradiction. Thus, £ + a; > 0, which implies that

o) € HO(YO, SykaY(log Y)

x°)-
Here we denote by X = X\ U j#i i N Z; whose complement has codimension at least two in X. By
the Hartogs theorem, it extends to a logarithmic symmetric form on X. The first claim is proved.

If u is not constant, then there is some connected open set U C X such that the pluriharmonic map
u; : U — A defined above is not constant. As G is semisimple, its root system {«1, . . ., @, } generates

A*. Thus, the mutivalued holomorphic 1-form {wy, . . ., w,,} constructed above is non zero. By (4.4),
oy # 0 for some k € {1,...,m}. We prove the second claim. The proposition is proved. |

The following lemma is the criterion on the meromorphicity of functions in terms of LP-
boundedness.
Lemma 4.5. — Let f be a holomorphic function on (D*)¢ x D"~ such that

‘/(D )f pn-¢ If(Z)Ipile A le A= A len A dZn < Ca
#) DN

fJor some real 0 < p < co and some positive constant C. Then f extends to a meromorphic function
on D"
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Proof. — Since |f(z)|? is plurisubharmonic on (D*)¥ x D’, by the mean value inequality, for any
z=(z1,...,2n) € (D ) x (]D|)" ¢ one has
_ 4n7fC
P s — / FOIPides ATy A+ A idgy NdT, < —
Hf’1| i T L Ll

where
. _ . 1 .
Q :={({1,.... &) € (D) XD 14—z |< |zl fori < 6518 — 2] < 3 fori > ¢}.

Thus, there is a constant Cy > 0 such that

14

_2

1F@I < Co Izl
i=1

forany z = (z1,...,2n) € (D ) x (D 1)"~¢. Hence Ht’ f(z) is bounded over (D ) x (D )" e.
By the Riemann extension theorem 1t extends to a holomorphlc function over D". The lemma is
proved. |

Theorem 4.6. — Let (X, ) be a log smooth pair. Let K be a non-archimedean local field K. If
o : m11(X) = GLy(K) is an unbounded representation, then we have

(4.8) H°(X, Sym*Qx(log X)) # 0

for some positive integer k.

Proof. — Step 1: Assume that o is reductive. By Lemma 4.2, to prove (4.8), we are free to replace X
by its finite étale covers. We denote by G the Zariski closure of o, which is assumed to be reductive.
Let G° be the identity component of G. After replacing X by a finite étale cover corresponding to the
finite index subgroup o~'(o(71 (X)) N G°(K)) of 71 (X), we can assume that the Zariski closure G of
o is connected. Hence the radical R(G) of G is a torus, and the derived group D(G) is semisimple.
Write T := G/D(G) and G’ = G/R(G). Then G’ is semisimple and T is a torus. Moreover, the
natural morphism

G—->G' xT

is an isogeny. We may assume that G’ and T are split over K after we replace K by a finite extension.
Denote by ¢’ : m1(X) — G’(K) X T(K) the composed morphism of o and G(K) — T(K) x G’ (K).
Then it is also Zariski dense.

Since we assume that the image of o(x(X)) is unbounded, it follows that the image of o’ is
also unbounded (see e.g. [KP23, Lemma 2.2.10]). Let p; : G'(K) X T(K) — G’(K) and p; :
G’ (K)XT(K) — T(K) be the projection maps. Then representations 0| := pjo o’ and 03 := ppo 0’
are both Zariski dense.

Assume first that oy : 711(X) — G’(K) is unbounded. By Theorem 2.1, there is a locally Lipschitz
o1-equivariant pluriharmonic map i : X > A(G’) which has logarithmic energy growth. Note that i
is not constant; otherwise, its image point would be fixed by o (71 (X)), and the subgroup of G’ (K)
fixing a point of A(G’) is compact, which contradicts our assumption. Thus, (4.8) follows from
Proposition 4.4.

Now assume that o : 71(X) — G’(K) is bounded. Then the image of o, : 7;(X) — T(K)
is unbounded and must be infinite. Since 7 (K) is abelian, it follows that o induces a morphism
H((X,Z) — T(K) with infinite image. In particular, by the universal coefficient theorem, we
conclude that H' (X, C) is infinite.

Claim 4.7. — H°(X,Qx(logX)) # 0.
Proof of Claim 4.7. — By the theory of mixed Hodge structures, one has an isomorphism

H'(X,C) =~ H'(X,Qx(log X)) ® H*' (X).

Since H'(X,C) is infinite, either HO(X, Q(logX)) or H%!(X) is non-zero. In the latter case, by
Hodge duality, H%(X, Q) and thus HO(X, Q(log X)) are non-zero. O
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In summary, we have proved that HO(X, Symkﬂg(log %)) # 0 for some positive integer if o is
reductive.

Step 2: General case. Let 0°* : m1(X) — GLy(K) be the semisimplification of o. It follows that
0*¢ is reductive. Since 1 (X) is finitely generated, there exists a finite extension L of K such that
0% : m1(X) — GLy(L). Note that ¢** is also unbounded (see e.g. [DYK23, Lemma 3.5]). Applying
the result from Step 1, we conclude (4.8). The theorem is proved. m|

5. Proof of Theorem B

5.1. On Simpson’s integrality conjecture. — In [Sim92], Simpson conjectured that for any smooth
projective variety X, a rigid representation o : 7;(X) — GLy (C) is conjugate to an integral one, i.e.
a representation 71 (X) — GLy (Oy) where k is a number field and Oy denotes the ring of integers
of k. This is known as Simpson’s integrality conjecture. In [Klil13, Corollary 1.8], Klingler proved
Simpson’s conjecture for compact Kihler manifolds that do not admit symmetric differentials. In this
subsection, we extend Klingler’s theorem to smooth quasi-projective varieties.
Theorem 5.1. — Let (X, X) be a log smooth pair. Assume that H(X, SykaY(log Y)) = 0for every
positive integer k. Then for any positive integer N, each semisimple representation o : n(X) —
GLn (C) is rigid and integral. Moreover, o is a complex direct factor of a Z-variation of Hodge
structure.
Proof. — Step 1: Any reductive representation is rigid. Let Rg(X, N) be the representation scheme
of 71(X) into GLy, which is an affine scheme of finite type defined over Q (cf. [LM85] for the
definition). For any field K, we have Rg(X, N)(K) = Hom(m(X), GLN(K)). Note that GL acts
on R (X, N) by conjugation. Denote by 7 : Rg(X, N) — Mg(X,N) the GIT quotient, which is a
surjective morphism of affine schemes of finite type defined over Z.

If Mg(X,N) is a positive-dimensional affine scheme, then there exists a Q-morphism
W : Mp(X,N) — A! whose image is Zariski dense. Since m is surjective, we can find a
closed irreducible curve C C Rg(X, N) defined over Q such that ¢ o 71| : C — Al is generically
finite. We may take an open subset U ¢ A! over which the morphism y o 7r|c : C — Al is finite.

Let k be a finite extension of Q such that C is defined over k, and iy orr| ¢ is a morphism of k-schemes.
Let p be a non-archimedean place of k, and k, be its completion. Then k is a non-archimedean
local field of characteristic zero. Take x € U(kp) andy € C (k_p) over x. Then y is defined over some
finite extension of k,, with its degree controlled by the degree of ¥ o m|c. Note that there are only
finitely many such field extensions. Hence there exists a finite extension L of k, such that the points
over U(ky) are all contained in C(L). Since U (k) is unbounded, the image ¢ o n(C(L)) c Al(L)
is unbounded.

Let Ry be the set of all bounded representations in Rg(X,N)(L). By a theorem of Yamanoi
( [Yam10, Lemma 4.2]), My = n(Rg) is compact in Mg(X, N)(L) with respect to the analytic
topology, implying that ¢ (M) is bounded in A'(L). Accordingly, there exists some 7 € C(L) such
that 7 : 1;(X) — GLy (L) is unbounded. By Theorem 4.6, we have H(X, SykaY(log %)) # 0 for
some positive integer k. This leads to a contradiction, proving that Mg (X, N) is zero-dimensional.
Hence any representation o : 71(X) — GLy (C) is rigid.

Step 2: Anyrigid representation is integral. Let o : 11(X) — GLy (C) be a semisimple representation.
By Step 1, it is rigid. Thus, after conjugation, there exists a number field k such that o : 71(X) —
GLy (k). Let p be a non-archimedean place of k, and let k;, be its completion. By assumption and
Theorem 4.6, the extension 711 (X) — GLy (k) of o is bounded for each non-archimedean place p of
k. Therefore, o factors through 71(X) — GLy (0Oy), where Oy is the ring of integers of k. Thus, o
is integral.

Step 3: o is a complex direct factor of a Z-VHS. Let o : m;(X) — GLN(Og) be as in Step 2.
For every embedding o : k — C, the composition o o o : 71(X) — GLy(C) is semisimple and
rigid. By [Moc06], o o o underlies a complex variation of Hodge structure for each embedding
o : k — C. The conditions in [LS18, Proposition 7.1 and Lemma 7.2] are satisfied, and we
apply [LS18, Proposition 7.1] to conclude that o is a complex direct factor of a Z-variation of Hodge
structure. The theorem is thus proved. O
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Remark 5.2. — The above proof gives a new proof of the rigidity part [Ara02] in the projective case.
In the first version of the present paper on arXiv, we used Uhlenbeck’s compactness in gauge theory
to prove such result. However, we felt that it would be more interesting to establish Theorem 5.1 from
the theory of harmonic maps to Bruhat-Tits buildings, as it provides a unified approach to both rigidity
and integrality.

It is worth noting that non-abelian Hodge theory in the archimedean setting cannot be entirely
avoided. Specifically, in Step 3, we rely on Mochizuki’s theorem in [Moc06], whose proof is based
on harmonic maps to symmetric spaces.

Recently, Esnault and Groechenig [EG 18] proved that a cohomologically rigid local system over a
quasi-projective variety with finite determinant and quasi-unipotent local monodromies at infinity is
also integral.

5.2. Proof of Theorem B. — Let us prove Theorem B.

5.2.1. The case of characteristic zero. —
Proof of Theorem B for char K = 0. — Since r; (X) is finitely generated, there exists a subfield k ¢ K
such that tr.deg.(k/Q) < co and 7(7(X)) € GLy (k). We can choose an embedding k — C, and
thus assume that 7 : 71(X) — GLx (C).

Thanks to Lemma 4.2, to prove the theorem, we are free to replace X by finite étale covers. Let
o : m1(X) — GLy(C) be the semisimplification of 7. If o (71 (X)) is finite, then after replacing X
by a finite étale cover, we can assume that o~ (71 (X)) is trivial. In other words, 7 (71 (X)) is contained
in some unipotent group U € GLy (C). Then, there exists a sequence of normal subgroups

U=U()DU13---DUS={1}

such that each U; /U, is commutative. Since 7(r; (X)) is infinite, after replacing X by a finite étale
cover, there exists some i such that 7(7{(X)) C U; and the natural map v’ : 7;(X) — U;/Uis
induced by 7 has infinite image. Since U; /U, is abelian, 7’ factors through H{(X,Z) — U;/Ui4.
In other words, H;(X,Z) is infinite. By the universal coefficient theorem, H!(X, C) is also infinite.
By Claim 4.7, we have H(X, Qx(log X)) # 0. The theorem is proved if o~ has finite image.

Now, assume o has infinite image. We assume by contradiction that

H°(X, Sym*Qx(log X)) = 0

for all k > 0. By Theorem 5.1, o is a direct factor of a semisimple representation o : m1(X) —
GL,,(Z) underlying a Z-variation of Hodge structure. Let

®:X > DT

be the corresponding period map, where 9 is the period domain and I' = o (711 (X)) is the monodromy
group, which acts discretely on 9. By Malcev’s theorem, we can replace X by a finite étale cover such
that I is torsion-free. Since o has infinite image, ® has positive-dimensional image. By a theorem of
Griffiths [Gri70], there is a Zariski open subset X; C X containing X such that @ extends to a proper
holomorphic map X; — 9/I'. Its image Z is thus a proper subvariety of & /I". By a theorem of
Sommese [Som78, Proposition IV] (or [DYK23] for a new proof), there exists:

(a) aproper bimeromorphic map v : ¥ — Z from a smooth quasi-projective variety Y,
(b) a proper birational morphism y : X, — X; from a smooth quasi-projective variety X»,
(c) an algebraic and surjective morphism f : X, — Y,

such that we have the following commutative diagram:

X, 25 x,

oo

Y—V)Z

Take a smooth projective compactification ¥ of ¥ such that £y = Y — Y is a simple normal crossing
divisor. Then Y — Z — 9/T is a generically immersive and horizontal map. By [Brul8, BC20],
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we know that the logarithmic cotangent bundle Qy(log Xy) is big. Therefore, there exists a positive
integer k such that

H(Y, Syka?(log 2y)) # 0.
Take a smooth projective compactification X, of X, such that:

- X = YZ\XZ is a simple normal crossing divisor.
—  f extends to a surjective morphism f : X, — Y with f~1(Zy) c Z,.
—  uextends to a birational morphism i : X, — X with gi~!(Zx) c %,.

We pull back a non-zero logarithmic symmetric differential in H°(Y, Syka?(log Yy)) via f to

obtain a non-trivial element P € H°(X>, Symkﬁiz(log %5)). Let E be the exceptional locus of f.
Then f(E) has codimension at least two in X since y is birational. Thus, P induces a section Py €
HO(X\u(2), SykaY(log 2”?\5)' By Hartogs’ theorem, Py extends to a non-trivial logarithmic
symmetric differential in H°(X, Sym* Q+(logX)). The theorem is proved in the case where char K =
0. O

5.2.2. The case of positive characteristic. —

Proof of Theorem B for charK > 0.. — We can assume that K is algebraically closed after replacing
K with its algebraic closure. Let p = char K. Let Rg(m;(X), GLy) be the representation scheme of
71 (X) into GL, which is of finite type and defined over Z. Note that Rg (11 (X), GLy ) (K) can be iden-
tified with the set Hom (71 (X), GLy (K)). Consider the base change Rz, := Rp(71(X), GLn) Xspecz
SpecF,, which is an affine F),-scheme of finite type. We note that GL(N,F)) acts on Rg, via
conjugation. Using Seshadri’s extension of geometric invariant quotient theory for schemes, we can
take the GIT quotient of Rg, by GL(N,F),), denoted by Mg ,. Then Mg, is also an affine F,-scheme
of finite type. Note that the K-points Mg, (K) are identified with the conjugacy classes of semisimple
representations 71 (X) — GLy (K).

Case 1: Mg, is positive dimensional. Since the morphism 7, : Rg, — Mg, is surjective between
affine F,-schemes of finite type, we can find an irreducible affine curve C, C Rg, defined over PP
such that 7, (C,) is positive dimensional. Let C be the compactification of the normalization C of
C,, and let {Py,...,P¢} = f\C . One can find a positive integer m such that C is defined over F,
with g = p™, and P; € E(Fq) for each i.

By the universal property of the representation scheme, C gives rise to a representation oc :

n1(X) — GLy(F4[C]), where F,[C] is the coordinate ring of C. Consider the discrete valuation
v; : F4(C) — Z defined by P;, where F, (C) is the function field of C. Let F, (C)Vi be the completion
of F,(C) with respect to v;. Then we have (Fq(C)W, vi) = (F,((2)),v), where (F,((2)),v) is the
formal Laurent field of F,, with the valuation v defined by v(X> a;t') = min{i | a; # 0}. Let
0i : m(X) — GLy (F4((1))) be the extension of o with respect to (mvl_, vi).
Claim 5.3. — There exists some i € {1,...,{} suchthat o; : m1(X) — GLy(F,((¢))) is unbounded.
Proof. — Assume for the sake of contradiction that p; is bounded for each i. Then after replacing o;
by some conjugation, we have o; (71 (X)) € GLy (F,[[¢]]). For any matrix A € GLy (B) where B is
an F,-algebra, we denote by x(A) = TV + o (A)TN~! + - + on (A) its characteristic polynomial
with 0;(A) € B the coefficients. Then o (oc(y)) € F,[C] for every y € m1(X).

Since we have assumed that o; (1 (X)) € GLy (F,[[#]]) for every i, it follows that o (0;(y)) €
F,[[t]] for each i € {1,...,f} and j € {1,...,N}. Therefore, by the definition of p;,
vi(oj(oc(y))) = 0 for each i. It follows that o;(oc(y)) extends to a regular function on C,
which is thus constant. This implies that for any {n; : m1(X) — GLx(K;)}i=12 with such that
charK; = p and n; € C(K;), we have x (171 (y)) = x (m2(y)) foreach y € 71 (X). Ityields [n1] = [n2].
Hence 7, (C,) is a point, leading to a contradiction. O

Claim 5.3 together with Theorem 4.6 imply the existence of non-trivial logarithmic symmetric
differentials in H°(X, SykaY(log %)). We have thus proved the theorem when Mg, is positive
dimensional.
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Case 2: Mgy, is zero dimensional. We will prove that this case cannot occur. First, assume that
7 :7m1(X) — GLy (K) is semisimple. It follows that 7 is conjugate to some o’ : 711(X) — GLy (I_Fp).
Since 71 (X) is finitely generated, we have o’ (71 (X)) C GLy (F,) for some g = p™. Since GLy (Fy)
is a finite group, it follows that o’ (71 (X)), hence 7(m1 (X)), is finite. This leads to a contradiction.
Hence the semisimplification of T must have finite image.

After replacing X by a finite étale cover, we can assume that 7 (711 (X)) is contained in the subgroup
of strictly upper-triangular matrices in GLx (K), which is a successive extension of G, x. Hence
7(m1(X)) is a successive extension of finitely generated subgroups of G, k., all of which are finite. It
follows that 7 (1 (X)) is finite, leading again to a contradiction. Thus, M, cannot be zero dimensional.

The proof of the theorem is accomplished. |

Appendix A. Pluriharmonic maps from a quasi-projective surface

In a series of remarkable papers [Moc07, Moc06], Mochizuki proves the existence of a plurihar-
monic metrics on flat vector bundles over smooth quasi-projective varieties. These metrics correspond
to infinite energy pluriharmonic maps into symmetric spaces of noncompact type by the Donaldson-
Corlette theorem (cf. [Don87, Cor88]). The key step in Mochizuki’s argument is to show that the
harmonic metric over a quasi-projective surface is actually pluriharmonic. The existence of pluri-
harmonic metrics on a higher dimensional smooth quasi-projective variety follows from an inductive
argument on the dimension. In this appendix, we generalize Mochizuki’s argument to prove the
following.

Theorem C. — Let (X,3%) be a log smooth pair with dimX = 2, Y be a Riemannian manifold
with strongly nonpositive curvature or a Euclidean building, and p : n1(X) — Isom(Y) be an
isometric action on Y. Endow X with a Poincaré-type Kdhler metric g defined in Section 1.3. Then a
o-equivariant harmonic map i : X — Y with logarithmic growth with respect to g is pluriharmonic.

Note that symmetric space of noncompact type has strongly nonpositive curvature (cf. [Loh90,
Corollary 5.5]). Thus, Theorem C includes these cases which have already been proved by Mochizuki
(cf. [Moc06, Proposition 11.20]).

The notion of harmonic maps of logarithmic energy growth has been discussed in [DM?23a]
and [DM24a]. Loosely speaking, this means that the energy density function of u grows like } along
a disk transverse to a X. For the purpose of this appendix, it suffices to know that u satisfies the energy
estimates listed in Section A.4. We established this in [DM?24a].

We will assume for the majority of the appendix that (X, X) is a log smooth pair with dim X = 2,
and that the target space Y is either a Riemannian manifold M of strongly nonpositive curvature or a
Euclidean building A(G). In Section A.6 and Section A.7, we treat the two cases Y = M or Y = A(G)
separately.

A.1. Pairing of forms. — We will use the following notation. Let M be a smooth Riemannian
manifold and TM ® C be its complexified tangent bundle. For a smooth map u : X — M, let
E :=u"(TM ® C). Decompose the pullback of the Levi-Civita connection as

V=V +V"
where
V' C¥(E) —» QY(E), V”:C¥(E) - Q" (E).
In turn, V’ and V”” induce differential operators

Op 1 QP4(E) — QPN (E), g 1 QP(E) — QPY(E)

where
Ie(p®s) = 0p@s+(-1)P"p@ Vs
Oe(p®s) = 0p@s+ (1)’ Viys.

Let {s} be a local frame of E. For
lﬁ = wi ® si € Qp’q(E) and .f = fl- ® Si c QP’,q’(E)
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we set

(.6} = (s s )i A Ej e QPrar?
where (-, -) is the sesquilinear extension to TM ® C of the Riemannian metric on M.
Remark A.1. — Consider the case when i : X — Y = A(G) is a harmonic map into a building. Let
x € R(u) and let N and A be as in Definition 2.9. Isometrically identify ¢ : RN ~ A and view the
restriction u, := ii| 5 as a map into RN . Thus 8_u¢ = %di“ is a (0, 1)-form with values in CV. Note
that du,, is independent of the choice of the isometric identification A =~ R up to rotation. Therefore,
the (1, 1)-form {5u¢, 5u¢} is independent of the choice of the isometric identification RY ~ A. For
this reason, we henceforth denote {du, 0u,} simply as {Ou, du}. This function is well-defined on
the regular set R(x) which is an open set in X of codimension 2. By the local Lipschitz regularity
of i, |{5u, 8_u}| is an integrable function on any compact subdomain of X, and we will henceforth
interpret it as a locally L!-function defined a.e. on X.

A.2. Cut-off functions. — Denote D_: to indicate that the complex coordinate z' parameterizes D.

Let P € £;NX; fori # j, and let Vp be a neighborhood of P containing no other crossings. Choose
holomorphic trivializations e; (resp. e;) of Ox(Z;) (resp. Ox(%;)) on Vp and define z! (resp. z%) by
setting o; = z'e;, (resp. oj= zzej). Let i be a Hermitian metric on Ox(Z;) such that |e|; = 1in
Vp for any crossing P.

Let /4 be a Hermitian metric on X, not necessarily Kéhler, such that the following holds:
(1) The metric A is the Euclidean metric in a neighborhood Vp of every crossing P, i.e.

hly, = dz'dz' + dz*d7*.

By rescaling o and o~ if necessary, we can assume without loss of generality that ﬁzl xﬁzz C Vp.
(i) The metric & induces the orthogonal decomposition 7X|y; = TX; @ NX; and under the natural

isomorphism

NZj = O0x(2))ly;,
the restriction of & to NX; is same as h;.
By scaling the metric # if necessary, we can assume that the restriction of the exponential map
exp: NX; C TY|ZJ. - X

to D; ={v € NZ; : [v|p; < 1} defines a diffeomorphism. We identity D; as a neighborhood of X;

inX;ie. D; ~exp(Dj) C X. Let Z);f =D\Z;.
Fix a non-increasing, non-negative smooth function 5 : [0, 00) — [0, 1] satisfying

1 2
n(x)zlforOSxSE, n(x):Oforg <X < o0,

For N € N, define a cut-off function

—-

L
n (N_llogloylfljz) in UZ);‘
1 j=1

)(NZX—>[O,1], XN = j=
1 otherwise.

A.3. Neighborhood of divisors. — We follow the notation of Sections 1.3 and A.2. The restriction
of the normal bundle NX; — X; to D; defines a disk bundle

(Al) Ty :Dj—>Zj.
We now consider a finite collection of sets near the divisor of the following two types:
— Assetof type (A) admits a local unitary trivialization
-1
(A.2) m; () QXD

ofm; : D  — X; where Q C X; is a contractible open subset of X ; containing no crossings. With
o the canonical section of O%(Z;) as before, define a function £ on Q X D by o; = e. Thus,
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¢ is holomorphic with respect to the complex structure on X and (£, z?) define holomorphic
coordinates on a set Q x D of type (A).

- A set of type (B) is a open set D,1 x D> C Vp where Vp be an open set as in Section A.2
containing a single crossing P € X; N X; (i # j). By the property (i) of the hermitian metric /
(cf. Section A.2), (z!, z%) are holomorphic coordinates with respect to the complex structure on
X. Furthermore, with the identification ﬁzl ~ 521 x {0} c %; (resp. ﬁzz ~ {0} x Ezz C X)),
ﬂ;l(ﬁzl) ~ Ezl X ﬁzz (resp. n;l(ﬁzz) ~ ﬁzl X ﬁzz) is a local unitary trivialization of
Ty 5]' - 2]' (I'CSp. Tt .D_i — X)).

Definition A.2. — Fix a smooth Kihler metric @ on X. We define a Kihler form on X\ |, j Zi by

\/__1

(A3) ng =Cw - T

Z 00 loglog |0',~|;i2 .

i#j

Define gy, to be the restriction to X;\ [J;,; X; of the Kéhler metric associated to this Kéhler form.
This is a smooth metric on X; away from the crossings. We will use the following volume estimates
for the Poincaré-type Kihler metric g defined in (1.3). For more details, we refer to [DM?24a, Section
3].

- Inasetof type (A), we write z> = re’? in polar coordinates. We have

1
(A4) dVOlg = dvolp (1 +0 ((—logr—2+a’)2))

where @ = @(¢) is a smooth function.

dz* A dZ*
=2ir?(-logr? + a)?

dvolp = dvolgj A

and g; is the restriction to X; of the Kahler metric g, defined in (A.3).
- Inasetof type (B), we write z! = pe’® and z> = re'? in polar coordinates. We have

1 1
5 ot =t (10 L) o L))

where

dz' A dz' A dz2 A dZ*
—2ip%(log 02)?  —2ir?(logr?)?

dVOlP =

A.4. Energy estimates for harmonic maps of logarithmic growth. — Let L; be the translation
length of o(y;) where y; is the element of 71 (X) corresponding to a loop around the irreducible
component X ; of the divisor . Throughout this paper, the p-equivariant harmonic map i in Theorem C
are assumed to satisfy the following estimates:
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(i) Inthe set Q x D* away from a crossing where (z!, £ = se'”7) are the holomorphic coordinates on
i

QxD,
2 -
/ 8_u] dzl/\dzl/\ﬂ < o0
axbr, |0z s2(—log s?)?
I
6u2 Lj 1 1 _
— - dz” NdZ ANdEANdE <
/QXD*I (ag 167rs2) G ANATNAENdG < oo
i
oul> ., dindi
/g; _ & dZ /\dZ /\m < o0
xD% g S
)
dul’ 1 1 -
|| dz AdZT ANdENdE < oo
QxDy ds
1
2 Lz. /\d_
/ 8_u -1 dzl/\dzl/\dg ¢ 00
QXD*] 61] dr S2
I
dul* d¢ A de
—| d AdFt A =—=2""2_ < .
/ng*l an| T (T log sy -
b

(ii) In the set D’z X Dj at a crossing where (z' = pe’?, 72 = re'?) are the holomorphic coordinates

7 i
onD x D:
oulr L? dz* A dZ2
- dz' NdZ' A —""— <
‘/D*l D (c’)zl 16702 ¢ ¢ r2(—logr?)? «
4 4
2L\ 4l aal
/ Dulf i | LA 42 ha? < oo
B xb |10z 167r> | 0*(—log 0?)
1 1
oul* dz* A d7?
[ ol et nadt n il <
B B |00 r2(—logr?)
4 4
2 1 51
AN
By b |0r| 0*(—log0?)?
1)
oul> L\ dz' ndz'  d? AdZ?
5l T an AR 2 < %
b xor \|[0¢] 4 0 r*(=logr?)
4 4
/ oul> L?\ dz' Ad7! . dz% A d7* 3
oup _Hi 0.
b i \|00] 4] 0*(~log 0?)? r?
!

Remark A.3. — In [DM?24a], we constructed a p-equivariant harmonic map satisfying the above
estimates (cf. [DM24a, Theorem 6.§ and Theorem 6.7]) under the assumption that p is proper; i.e.
the sublevel sets of the function § : X — [0, co) defined by

6(P) = max{d(p(1)P,P) : 1 € A}.
are bounded in Y.
A.5. Technical results. — We will prove the technical results needed in the proof of Theorem C.

The arguments presented here are similar to those contained in [Moc07]. We include all the details
for the sake of completeness.
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LemmaA.4. — LetV = D* XD* be a set at a crossing (cf. Section A.4 (ii)) and (z! = pe'?, 22 = re'?)

be holomorphic coordmates in V. If {Fn}§_, is a sequence of functions defined on V satisfying the
Jollowing:

(a) |Fn(z', 2| < (_locwfor some constant ¢ > 0 independent of N,

dz' ndZ' dZ? A d7?
(b) co ::/FN(zl,zz) £ 5 < A ¢ 5 ¢ is independent of N, and
1% 0 r

(c) forany z* € D* with |z?| = r, Fn(z',7%) = 0 for N sufficiently large,
3

then
2 2 =2 2
. u dz= Nd7 coL;
1 —| dz' Adz' A =1L
Nt v a1 ¢ ¢ r? 167
Proof. — We first rewrite
dz* A dZ?
/ dz P LA
\%4 (9 1 1”2
L2 dz' NdZ' dZ? A dF?
i Fn(zl 72 A
Tox J, ~n(z',2) Q2 3
ou : dz2 A dZ?
(A.6) /FN(z 2 [ & dz' adzt A L8
v oz} 167TQ r2

The first term is equal to 16 Loy by assumption (b). For the second term of (A.14), we first rewrite the

integral as
% 2r
[ e
0 D% Jo

1
i
By assumption (a), the integral inside the bracket, i.e. the function
2r 2 2 52
dz” NdzZ
(A7) r|—>/ / Fy(z!, zz)( ) odp N ————,

167r 2 -2ir?
is bounded from above (mdependently of N) by a non-negative function

2r L2 d2 A d72
r|—>c/ / ( lz)Qdﬁb/\ L

1670 —-2ir?(-logr?)?’
The above is non-negative by the definition of L; and integrable over the interval [0, %] by Sec-
tion A.4 (ii). Furthermore, the function (A.7) converges to 0 for each r € (0, i) by assumption (c).
Thus, Lebesgue’s dominated convergence theorem implies the result. m|

oul’
oz!

—2ir? do-

L? " dz? A d7?
16702

a 1

07!

Proposition A.5. — If {xn} is the sequence of cut-off functions defined in Section A.2, then

(A.8) lim /aEXN A {du, du} < .

N—oo Jx
Proof. — LetV be either a set Q x D* away from the crossings (cf. Section A.4 (i)) or a set D* x D*
3 3 3

at a crossing (cf. Section A.4 (ii)). Since Adyn is supported in the finite union of such sets for
sufficiently large N, it suffices to prove

(A.9) hm / dxn A {Ou,du} <

for either V = Q X D7 or V = Dj X D*y Throughout this proof of (A.9), we will use ¢ to denote a

! i 3
generic positive constant that may change from line to line but is independent of N € N.
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First, consider the subset V = D* x D* near a crossing with local holomorphic coordinates
i i
(z! = 0e'?, 7% = re'?). In V and for N sufficiently large,
1.2 -1 2 -1 2
xn(z',z°) = n(—N log o )n(—N logr )

The support of ” (~N~!log 0?) and " (~N~!log 0?) is contained in

1 2
(A.10) Wy = {5 < -N'logo* < 5}
and the support of 7’ (~N~!logr?) and ”” (-N~!log r?) is contained in
1 2
(A.11) Vyi={= <-Nllogr* < =t.
2 3
Therefore,
’ _N—ll 2 ’ _N—ll 2
(~log 0®) A oe) <c, (-logr?) WEN logr) <
N N
nu(_N—l lo 92) n//(_N—l lo I"2)
(A12)  (=logo?)? = B0l <, (~logr?)? = CRAA I
We have
a - ” - dzz A dzz
ddxn = n(-N""logo®)n" (-N""logr?) ——=5—
N=r
dz' A d7'
” -1 2 -1 2
+1""(=N""log 0")n(-N""logr )Nz—gz
dz' A d7?
1o a1 270 -l 2
+1'(=N""log 0")n’(-N""logr”) N2
dz* A d7'
(A.13) +17'(=N""log r?)y’ (-N""log 0%) =225
N2Z'Z2

Using (A.13), we write the integral of (A.9) as the sum (i) + (if) + (iii) + (iv) where

: _ L d2 NdZ> - -
(i) = /n(—N Mog 0®)n” (-N 1logrz)v/\{au,(')u}
\%4 r
) b . dz' AdZ' o
(i) = /77 (-N"log 0*)n(-N 1logrz)W/\{au,(?u}
\% o
, _ , _ dz' A d7* -
(i) = /n (-N""log 0*)1’ (-N llong)TA{au,au}
v N*z'z
_ R I d2 NdZ - -
(iv) = /77 (-N"1log 0*)1' (-N llogrz)? A {0u, du}.
v N7’z

First, consider the integral (i). Using the identity

ou Ou out du’

(Gro ggp 427 N4 = Iuja oog 42T A AP = (9w, Bu},
we have
"(-N""logr?) | du dz? A dZ
\4 Z

‘We now check that
n” (-N~'logr?)

Fy(z',2%) = n(=N""log 0*) ———
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satisfies the assumptions (a), (b) and (c) of Lemma A.4. First, F(z!, z%) satisfies assumption (a) of
Lemma A.4 by (A.12). Next, we will check that the function Fy (z!, z%) also satisfies assumption (b)
of Lemma A.4. Indeed, after a change of variables,

(A.15) t=-N"'logo and s =-N""logr,
we obtain
dz' A d7! dond dz* A d7* dr A do
CNAT 5 A0 NP g ndg and LI o i TN s a o,
No? No Nr? Nr

Thus,
7’ (~-N~'logr?) dz! Adz'  dZ* A dZ?
N2 0> A r2

co = / n(-N""log 0%
\%

1 1 1

= C/OSU(Zt)dt[3U'l(zs)dszc/0377(2t)dt‘ (n/(g)_n,(%)) _o.

I
Finally, Fx (z!, z%) satisfies assumption (c) of Lemma A.4 by (A.11). By applying Lemma A .4, we
conclude
(A.16) A}im |(@)] = 0.

The same argument also implies
li i) = 0.
Jim |Gt
We will now bound the term (iii). Indeed, we can rewrite

/ 7' (-N~'log 0%)  (-N~'log r?) dz' A dZ*
1%

N N = A {Ou, du}
7'z

|G|

. / du  du n'(—N-llogg2)n'(—N—llong)dzlAdzlAdzzAdzz
T vl ezl 6 N N 0 r
2 0 (=N-11 2y 2 2 A 472
/ a_ul (n(N ogg)) PR AR
VN az N I"2
ou |* (7' (=N~"1ogr2)\* dz' A d7"
(A.17) +/ = (’7( Ogr)) Y Y
Wn 107 N 0

For the first integral on the right hand side of (A.17), we let

77’(—N‘110gr2))2

1 2
FN(ZaZ)zXVN( N

where yv, is the characteristic function of Viy. First, F (z!, z%) satisfies assumption (a) of Lemma A .4
by (A.12),. Next, we check that it satisfies assumption (b) of Lemma A .4. Indeed, using the substitution
(A.15),

/ 7' (=N~"logr?)\* dz' A d7! | d2ndZ
C =
0 VXVN N o )

o
= c[ dt‘/ (7" (25))~ds.
i 1

Finally, F (z!, z%) satisfies assumption (c) of Lemma A.4 by (A.11). Thus, the second integral on the
T2
right hand side of (A.17) limits to 6106—65 as N — oo by Lemma A.4. Analogously, the second integral
2

L2
on the right hand side of (A.17) limits to cl(;—”’ as N — co. Thus, we have shown
2,72
C()(Li + Lj)

A.18 lim |(iii)| <
(A.18) Nim (@] £ —
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Same argument shows
co(L7 +L3)
167
Summing the limits of (i), (i7), (iii) and (iv), we conclude that (A.9) is satisfied in the case V = D”i xDj .

lim (i) <
Jim ()] <

7 3
Next, consider set V = QXD away from the crossings with holomorphic coordinates (7', ¢ =re'?).

In V and for sufficiently large ]C’ ,

(A19) n ('8 =n (N ogblg1?)
We compute
- 7' (N"Yogb|Z|™2) (de AdZ 0bAOb  dbAdL di Adb
doxn = + - 7o
N? 112 b? b{ &b
’ -1 -2y _
(A.20) UG I;gbm ) 63108 b,

The support of " and 1" is contained in

1 » )
— <N 'logh <=
{2_ og b|{| _3},

which is contained in the set
(A.21) VN =QxD |

_N
z%,cre 3

,che

for appropriate constants c¢; and ¢, depending only on b. Therefore,

(A22) ' (N~"'logb|¢| %) ¢ c
' N loghr=2 = —logr?’
” -1 -2
(A23) n" (N~ logh|Z|™) ¢ < c
N2 (log br=2)2 = (-logr?)?

Using (A.20), we write the integral of (A.9) as the sum (/) + (/1) + (I11)+ (1V) + (V). For the integral
(1), we write

"(N'logb|Z|TH de NdE - -
v N e
ou [* de ndé
< —| dz' AdZ' A —=—== (by (A.23)).
C/VN a71| 4 NIT AN T egsryy (BY (A2
By Section A.4 (i),
ou [* d¢ A df
—| de' AdF' A —=——=—
_/V az1| ¢ r2(—logr?)?
Thus, Lebesgue’s dominated convergence Theorem implies
A24 lim (1) =0.
(A.24) Jim (1) =0
For the integral (I7), we write
~ 7' (N~'logh|l|72)dbAdb -~ -
ani = | [ HE 298 1 \u.bu)
_ 2 _
ou | d¢ nd d d¢ nd
< c/ = dzl/\dZI/\g—fz+/ Y . fAL
vy 107 (—logr?) vy |0 (—logr?)

(by % = 0(1) and (A.23)).

By Section A.4 (i), we can apply an analogous argument to (A.24) to conclude
1\}12100(1 I =0.
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In order to estimate (//1), notice that

ou Ou

2
d7' Ndz' +(—. =
07" a¢

u
=1

dZ A {du,du} = dZ A (; ydz! Adg).
Z
Thus,

(1| =

/ n"(N~'logbl¢| ™) 9b A dE
\4
ou

ou,d
e vz A {0u, du}
C
/VN(azl

(by % =0(1) and (A.23))

.|
.|

By Section A.4 (i), we can apply an analogous argument to (A.24) to conclude

dc ndl
r(—logr?)?

IA

’ ‘<3_u ou
97"

)dz‘/\dz‘/\

ou
az'
ou [*
az'

ou Ou
87" o

u 2
)dz‘ Adz'A
o

dc ndl
r2(—logr?)?

2
+'(

)

) dz' A dzt A

dc ndl
r2(—logr?)?

2

IA

(by Cauchy-Schwartz).

lim (/11) = 0.
im (11D =0
Similarly,

A}linoo(lV)=O.

We thus conclude

Jim [(D]+ D]+ [UID]+ (V)] = 0.

Next,

(V) 8dlogb A {du, du}

/ 7' (N~ logb|¢| %)
\4

N
’ —11 -2 21 2 _
_ /n(zv 02bIEI) 07108 o1 et |94 g n ag
v N 97107
’ -1 -2y 52 2
+/,7(N logbl¢I?) &logb .z N OU ) oy
v N EY)s 07!
’ N—ll b -2 21 b z
+/;7( oghl|l|™%) 0 Og_dzlAd§A<a—_u,a—Lf>d21/\d{
v N azlaé azl ag
’ —11 -2 21 -
+/77(N Ogb|§| )a Oglbdé*/\dzl/\<a—bf,a—ul>d§/\dzl
v N 807 0 oz

= (Vhi+(V)a+ (V)3 +(V)s.
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We estimate

' (N~'logbl¢|d)||0%logb||du | :
V)l < PN AdZ Nde A d
V)l < /V o 5| s nazt nag naz
< c/ 0ul® 1 gzt g dENdE
Vi Fral (- 10gr2)
82 log b
(b %22 _0(1) and(A.22))
0Ld¢
N~'logb|Z|7%)||0% logb a 9
(V)s] < /’7( 0gbIEIT) (|07 log bl du ou ) ) v\ 1 ) a ar
1% N 0z'0¢ ol
1 ou ||0u
< S dz' AdZ' AdEAd
C/VN (Clogr?) |07 ||aZ Z NN

82 log b
(b %22 _ 0(1) and (A.22))
EYE)s
ou | 1 oul? -
< —| +—————|=| |d' AdZ' Adi A d
C/VN(&‘Z1 (~logr?)? [0¢ ) Cadendend
and similarly
ou | 1 ou -
Vsl < S dz' NdZ' Ade A de.
|Vl c/VN( * e ag)z 2 ndg A di

With these estimates, we can argue as in the proof of (A.24) to conclude

1\}12100(‘/)2 +(V)s+(V)a=0

We are left to compute

"(N~'logb|Z]|7%) % log b ou
v N 07107 5§
First, use the identity
8% log b 8% log b
220 = =20 L0+ o)
97167 07107

to write
W =Via+ Vip.

We estimate

dul*

¢
dz' AdZ' Ade AdE (by (A.22)).

n’ (N~'log b|¢|72)

L=
oul?

< c/ _r  |ou
vy (—logr?) |67

Thus, we can argue as in the proof of (A.24) to conclude

]\}l_r)noo(v)lb =0

[(V)1s] 0(Q)dz' AdZ' A de A dl

Furthermore,
11 b -2 21 b 2
Ve = /”(N 02bIeI) 67108b 1 1ot gzt A |24 a A g
v N 7167 o7
N-'log b|¢|2) 82 log b oul L
_ /'7( og b|{|™7) 0 log (z1.0)dz! A dz' A u
v N 47167 6{ 16n r2

(z',0)dz' AdZ' AdE A de.

+L2/U(N 'og bIZ| ) 72 log b
4n Nr2 07107

)d.{/\d{

45
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The first term on the right hand side above can be estimated by

’ —11 b -2 21 b 2 Lz- _
/n(N 0gble1™) 97 logb i (104N T N ot n gzt A dZ A de
v N 97107 ac|  4mr?
2 L2 z 2
<o [ |2 - i) ae naa L0 (b slogb _ o) and(A.22>).
vw \|0Z]  4nr? (=logr?) 97197

With these estimates, we can argue as in the proof of (A.16) to conclude

Z\}Enoo(v)l = ]\}iinoo(v)la"'(v)lb
L2 1 NPV
i n'(N~'logb|Z|7*) 8% logh ,
= 1 L0)dz' AdZ' AdEAd
dn NS Jy Nr? 9z197" (00 ndendt
0%log b "(N~'logb|Z|7?) -
- —/ g 08221 0ydz! Adz Jim. 7' o2 V) 47 n ar
97107! D1 Nr

L2 Lo N1 2

r . n’(-=N~"log br-)
= — O0+(Z:)) - 1

47ri/gz®( X( ’)) Nligo'/() Nr dr

_ L
- 2 [ewzz.

In the above @(O(X;)) denotes the curvature of the hermitian metric /; on the line bundle Ox(X;).
The estimates for (1), (I1), (I1II), (IV) and (V) imply that (A.9) also holds for V = Q x D7} away
1

from the crossings. O

Proposition A.6. — Assume
(A.25) / |0gdu|? < oo.
X
If {xn} is the sequence of cut-off functions defined in Section A.2, then

lim dyn A {30u, du — du} = 0.

N—>oo

Proof. — LetV be either a set Q X D away from the crossings (cf. Section A.4 (i)) or a set D*l X I@*l

i i i
at a crossing (cf. Section A.4 (ii)). Since the support of dy is covered by such a set V, it is sufficiently
to prove

(A.26) lim [ dyn A {8du,du — du} = 0.

N—>
Thus, the rest of the proof is devoted to proving (A.26). For the sequel, the constant ¢ > 0 is an
arbitrary constant independent of the parameter N. First, consider the set V = D’ x D7 at a crossing
) ) 3 3
with local holomorphic coordinates (' = oe'?, 72 =re'?) (cf. Section A 4 (ii)). We have

ou—du = 8”d1 O ) o (2 g2 - 9
07! 07! 072 07>

ou ou dp ou Ou dr

= i|l— -—= —rdf - ——

1(699 ¢ ¢ Q) (arr 00 r)

and
"(-N""ogr?) 2dr n’(-N"'log o? 2d,
den = —n(-Nlog )™ ¥ 2 )7—77( ~ gQ)n(—Nlogrz)?Q-
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Thus,
/ dyn A {0du, du — du}
1%
2 1 2 1 2 ou u
= -y 77( -N""log o )’ (-N~"logr )— A {00u, Fa’z azldz }
2i | 5 1 5 ou
T 77( —-N""logo”)n'(-N~"logr )— A {0du, a—rd@}
2 1 2 1 do Ou 5 Ou
N n(N log 0" )n(—=N~ logr)g/\{aa azz—a—zzdz}
2i d - 0
(A27) N’ 7 (=N~ log 0®)n(~-N"log r*) =2 A {3du, a_qu¢}
Q
= (i)+ (zz) + (@) + (@il).

We will show that all the terms (i), (ii), (i’) and (ii’) go to 0 as N — oco. We start w1th (i). Note
that |7(—N~"log 0?)| has supportin o > ¢~ 3 and |’(~N~!log r?)| has support in e~ T <r<e ¥
(cf. (A.10)). Thus, the integrand of (i) has support in

Dy = Dzz,ef%,% X Dzl’{%’e_%.
We estimate
. 7’ (=N"'log r?) rdr A df
|(z)|£c/ S — Qd@/\d¢
Dy
1
_ 3
< ¢ (/ |08ul>dz" A dz' A dZ?2 A dZ2)
Dy
2 2 3
"(-N""logr?)\"| @ dz? A d7?
([ (e ok s a2
Dn N 8z1 r2

(A.28) (by Cauchy-Schwartz and (A.12)).

The first integral above limits to 0 as N — oo by assumption (A.25), volume estimate (A.5) and
Lebesgue’s dominated convergence theorem. The limit as N — oo of the second integral exists by
Lemma A.4 by following the proof of (A.18). Thus limy (i) = 0. An analogous argument shows

limy o0 (i’) =0
.
\%
1
dz? A d7? )2

Next,
0oul*dz" Ad7' A —— =
¢ (/DN |00ul"dz . r2(—logr?)?

/ oul?
X —
Dpn

or
(by Cauchy-Schwartz and (A.12)).

n'(-N""logr?)
N

dz? A d7?

r

|(i1)] dz' Ad7' A

IA

= ou
|00u| ’5

IA

2
dz' Adz' AdZ A de)

The first integral limits to 0 as N — oo by assumption (A.25), volume estimate (A.5) and Lebesgue’s
dominated convergence Theorem. The second integral also limits to O by Section A.4 (ii) and
Lebesgue’s dominated convergence theorem. Thus, limy_(if) = 0, and an analogous argument
shows limpy 0 (ii’) = 0
Next, consider a set V = Q x D* away from the crossings with holomorphic coordinates (z!, ¢ =
P

re'?). Since

= ou ou ou Ou dr
ou—0u= —dZ - d ) (6—}’0’9—%7)
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we have
(A.29) /d)(N/\{gﬁu,au—gu}
X
= 0 =. Oud
- i/dXNA{aﬁu, a—urd9}+i/dXNA{68u ou r}
X
= ou ou
+ [ dyn A{00u, —d7! ——d_
/X Xn A A{00u, PR }

(D) + (II) + (111)

where the integrals (7), (I1), and (I/1]) are estimated below. Let

Gy =QXxD ¥ N

zl,cre

Since,

dve = ' (N"'logbr™®) (2dr db
AN = N r b’

integral (/) is bounded by

()| ) (Gou, rd@}‘

7’ (N! log br=?) ( 2dr _db
b

rdr A d6 db
< 00 do Ndp N ————— |[since — = O(1
< /I ul ’Q oNdp A F(—logr?) (smce 5 (1)
_ 1
- dind 2
< c (/ |('3(9u|2dz1 A le A %)
Gn r>(—logr?)

1

r

[
Gn |0

|

2
dz' Adz' Ade A dg‘) (by Cauchy-Schwartz).

The first integral limits to 0 by assumption (A.25), volume estimate (A.4) and Lebesgue’s dominated
convergence theorem. The second integral also limits to O by Section A.4 (i) (with s = r) and

Lebesgue’s dominated convergence theorem. Thus, limy e (1) =0

Next, we estimate (/7). This is the term for which the modified Siu’s Bochner formula is crucial.

Indeed, we hightlight the cancellation % A % = 0 below:

’ —11 -2 2
/n(N og br )(dr db) (Gou, %ﬂ}
1%

|(1D)]

N r b
"(N"'ogbr=2)| = dr A d6
< c/ n'( ogor )|6(')u|‘8—M’Qd9/\d¢/\L
% N
(smcedb—b—O(l)adﬂ/\ﬂ—O)
1
<

c (/ |00ul>dz A dz' A de A dZ)
GN

2 —_
X / 6 dZ A d A M
Gn 00 r2(—logr?)?

1

2
) (by Cauchy-Schwartz).

The first integral limits to 0 by assumption (A.25), volume estimate (A.4) and Lebesgue’s dominated
convergence theorem. The second integral also limits to 0 by Section A.4 (i) (with r = s and 6 = 1)

and Lebesgue’s dominated convergence theorem. Thus, limy . (/1) =0
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Finally,
_ n'(N~'logbr™®) (2dr db ou ou -
[(IIT)| = N > A {00u, (91dz c‘)ld }
de ndl
< / |aau| et p gt 2204
r(—logr?)
(smce — =0(1) and by (A. 22))
1
<

( |(’)8u|2dz Adz! /\d{/\d{)

L

The first integral limits to 0 by assumption (A.25), volume estimate (A.4) and Lebesgue’s dominated
convergence theorem. The second integral also limits to O by Section A.4 (i) (with r = s) and
Lebesgue’s dominated convergence theorem. Thus, limy . (I11) =

We now conclude that (A.29) — 0 as N — co, which combined with the fact that (A.27) — 0 as
N — oo implies (A.26). This concludes the proof of Lemma A.6. O

dc ndl

dz' Ad7' A —2 5
¢ r2(—logr?)?

2
520 ) (by Cauchy-Schwartz).
z

A.6. Proof of Theorem C (I). — In this section, we let Y be a Riemannian manifold with strongly
nonpositive curvature.

Lemma A.7. — Assume that the harmonic map i of Theorem C maps into a Riemannian manifold
M with strongly nonpositive curvature. Then

/ ’8E5u|2 w? < co.
X

Proof. — The Siu-Sampson’s Bochner formula (cf. [Sam85]) is

(A.30) 90{0u,du} = 2(|(9E(§u}2+Q0) w?
where

J
(A31) Q 2ga/5gyBRlel au al/l au (91,{

8z% 37 07Y 079

In the expression for Q, we use local coordinates (z%) of X and (y’) of Y. If Y = A(G) is a building,
then (A.30) is valid for x € R(u) with Qo = 0. Multiply by yu, integrate it over X, and apply
integration by parts to conclude

2/X(|3E5u|2+Q0) AN© _/aa{au au}XN_/X{éu,éu}AaéXN.

The limit of the right hand side above as N — oo is bounded by Proposition A.5. This proves
Lemma A.7. o

We are now in position to finish the proof of Theorem C when Y = M is a Riemannian manifold

of strongly nonpositive curvature. To do so, we need the following variation of the Siu-Sampson-
Mochizuki Bochner formula for a harmonic map u# : X — M found in [DM23b]:

(4 |(9E§u|2 + Qo) w? = d{0p0u, Ou — du}.
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where Qg asin (A.31). By Lemma A.7, we can integrate the above equality and apply Proposition A.6.

Thus, we obtain
/ (4 |8E5u|2 + Qo) w?
X

/ d{8du, Ou — du}
X

lim xNd{ddu, du — du}
N—oo Jx

— lim dyn A {B0u, du — du)}
X

N—>o0

= 0.

Since Qg > 0 by assumption, Qg = |0 du| = 0. Thus, we conclude dgdu = 0; in other words, u is
pluriharmonic.

A.7. Proof of Theorem C (II). — In this section, we let Y be a Euclidean building A(G). Unlike
Section A.6, special care must be taken because of the presence of the singular set.
Lemma A.8. — For yn : X — [0, 1] as in Section A.2,

/85{8_u,8_u}XN=/{6_u,8_u}/\6_8)(1\/.
b X

Proof. — Let Q; be the support of yn which is relatively compact. With ¢; defined as in Theo-
rem 2.10, we have

/ 68_{5u,6_u})(1v;b,-
X

/x 34du, duy A d(xni)

/ (8(Gu, Gul A )i + / (@(Gu, Gu) A i)
X X

- / ({Gu, u} A GOxn) i + / (5, Guy A By A + / (64u, du} A 0w:) .
X X X

Furthermore, there exists a constant C > 0 depending only on the Lipschitz constant of yn such that

/{5u,5u}/\6,\/1v/\5¢,- < C/ |Vul?| Vi w?,
X Q

/(5{5u,5u}/\81,[1i))(1v SC/ IVVul||Vii|w?.
X Q

Thus, the assertion follows from letting i — oo and applying Theorem 2.10. |

Lemma A.9. — For the harmonic map i of Theorem C,
/ |(95u|2 w? < 0.
X
Proof. — The Siu-Sampson’s Bochner formula (cf. [Sam85]) is simply
2|06u|’ w? = 08{du, du}.
Multiply by yn, integrate it over X, and apply Lemma A.8 to conclude
2/ |85u|2 N = / 00{du, du} xyn = /{5u,5u} AOdynN.
X X X

The limit of the right hand side above as N — oo is bounded by Proposition A.5. This proves
Lemma A.7. m|

Lemma A.10. — For yn : X — [0, 1] as in Section A.2,

- / xnd{00u, du — du} = / dyn A {8du, du — du}.
X X
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Proof. — Let Q) be the support of yn which is relatively compact. With ¢; defined as in Theo-
rem 2.10, we have

- / YNVid{00u, du — ou} = / Yidyn A {00u, du — ou} + / yndyi A{0du, du — Ou}.
X X X

Thus, there exists a constant C > 0 depending only on the Lipschitz constant of u in the support of
X~ such that

/dewi A {d0u, du — du}| < c/ |VVul [V
X Q
The assertion follows from letting i — oo and applying Theorem 2.10. O

We are now in position to finish the proof of Theorem C when Y = A(G) is a Euclidean building.
The Siu-Sampson-Mochizuki Bochner formula in this case is simply

4 |5(§u|2 w? = d{ddu, du — du}

which holds for the harmonic map u# : X — A(G) in the regular set R(«#). By Lemma A.9, we can
integrate this formula to conclude

4/ |(’)5u|2 w?
X

/ d{ddu, Ou — du}

X

lim [ ynd{dOu,du — du}
N—oo X

— lim dyn A {00u, du — Ou}
X

N —>o

= 0.

Here the third equality follows from Lemma A.10 and the last equality is due to Lemma A.9 and
Proposition A.6. From this, we conclude that ddu = 0 a.e. on the regular set R(u) of u.

To show that u is smooth near every point p € R(u), let Q C R(u) be a neighborhood of p such
that u maps Q into an apartment A =~ RY of A(G) and let ¢ € CX(Q). For a sequence {i;} as in
Theorem 2.10, we have

lim [ ¢ 0¢; Aduw=0
i—% Jo

and thus
0 = lim /((ﬁwi)ﬁéuw: — lim /(¢a¢i+¢i6¢) Aduw= —/a¢ A du w.
1—00 Q 1—00 Q Q

In other words, ddu = 0 weakly in Q which implies u € C*(Q). Thus, we have shown u is a smooth
map and ddu = 0 in R(u). We can now apply Lemma 2.21 to conclude that u is a pluriharmonic map
in the sense of Definition 2.20.
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