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Abstract. — Given a complex smooth quasi-projective variety 𝑋 , a semisimple algebraic group 𝐺 defined
over some non-archimedean local field 𝐾 and a Zariski dense representation 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾), we
construct a 𝜚-equivariant (pluri-)harmonic map from the universal cover of 𝑋 into the Bruhat-Tits building
Δ(𝐺) of 𝐺, with some suitable asymptotic behavior. This theorem generalizes the previous work by
Gromov-Schoen to the quasi-projective setting.

As an application, we prove that 𝑋 has nonzero global logarithmic symmetric differentials if there exists a
linear representation 𝜋1 (𝑋) → GL𝑁 (K) with infinite image, whereK is any field. This theorem generalizes
the previous work by Brunebarbe, Klingler and Totaro to the quasi-projective setting.

Résumé (Applications pluri-harmoniques à valeurs dans un immeuble euclidien et formes différen-
tielles symmétriques)

Étant donnée une variété quasi-projective complexe lisse 𝑋 et une représentation 𝜚 : 𝜋1 (𝑋) → 𝐺 (𝐾)
Zariski dense du groupe fondamental dans un groupe algébrique semi-simple 𝐺 sur un corps local non-
archimédien 𝐾 , nous construisons une application (pluri-)harmonique 𝜚-équivariante du revêtement uni-
versel de 𝑋 à valeur dans l’immeuble de Bruhat-TitsΔ(𝐺) de𝐺, qui a de plus un comportement asymptotique
adéquat. Ce théorème généralise dans le cadre quasi-projectif un résultat de Gromov et Schoen.

Comme un application de ce résultat, nous montrons que s’il existe une représentation linéaire 𝜋1 (𝑋) →
GL𝑁 (K) d’image infinie, où K est n’importe quel corps, alors 𝑋 possède des formes différentielles
symétriques logarithmiques non-nulles. Ce théorème généralise dans le cadre quasi-projectif un résul-
tat de Brunebarbe, Klingler et Totaro.
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0. Introduction

0.1. Main theorem. — Let 𝑋 be a complex smooth quasi-projective variety, and let𝐺 be a semisim-
ple algebraic group defined over a field 𝐾 . In this paper, we mainly focus on representations
𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾), where 𝐾 can be the field of complex numbers, a number field, or a non-
archimedean local field. We refer to such a representation 𝜚 as Zariski dense if the Zariski closure of
its image is 𝐺.
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In the archimedean setting, i.e., when 𝐾 is the field of complex numbers, Donaldson, Corlette,
and Labourie established the existence of 𝜚-equivariant harmonic maps to symmetric spaces when
𝑋 is a compact Kähler manifold (cf. [Don87, Cor88, Lab91]). Mochizuki extended this result to the
quasi-projective case, proving the existence of 𝜚-equivariant pluriharmonic maps in [Moc07].

In the non-archimedean setting, i.e., when 𝐾 is a non-archimedean local field, Gromov and Schoen
proved the existence of 𝜚-equivariant pluriharmonic maps to the Bruhat-Tits building of 𝐺 when
𝑋 is a compact Kähler manifold (cf. [GS92]). However, extending their result to quasi-projective
varieties has remained a significant open problem for the past three decades. A series of works by
the second and fourth authors [DM21,DM23c,DM24a,DM23a] have made progress in extending the
Gromov-Schoen theory to the quasi-projective setting.

The main goal of this paper is to complete the generalization of Gromov-Schoen’s theorem to the
quasi-projective setting. Our main theorem is as follows.
Theorem A (=Theorems 2.1 and 3.9 and Proposition 3.2). — Let 𝑋 be a complex smooth quasi-
projective variety, and let 𝐺 be a semisimple algebraic group defined over a non-archimedean local
field𝐾 . Denote by 𝑋 the universal cover of 𝑋 . If 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾) is a Zariski-dense representation,
then there exists a 𝜚-equivariant, pluriharmonic map 𝑢̃ : 𝑋 → Δ(𝐺) to the Bruhat-Tits building Δ(𝐺)
of 𝐺, such that the following properties hold:
(i) the map 𝑢̃ is locally Lipschitz, and has logarithmic energy growth (cf. Definition 3.8).
(ii) the map 𝑢̃ is harmonic with respect to any Kähler metric on 𝑋 .
(iii) Let 𝑋 be a smooth projective compactification of 𝑋 , such that Σ := 𝑋\𝑋 is a simple normal

crossing divisor. For any smooth point 𝑥 of Σ, if the local monodromy of 𝜚 around the irreducible
component of Σ containing 𝑥 is quasi-unipotent, then there exists an open neighborhood Ω𝑥 of 𝑥
in 𝑋 such that the energy 𝐸 𝑢̃ [Ω𝑥\Σ] of 𝑢̃ on Ω𝑥\Σ is finite (cf. (1.1) and (2.4) for the definition
of energy).

(iv) Let 𝑓 : 𝑌 → 𝑋 be a morphism from a smooth quasi-projective variety𝑌 . Denote by 𝑓 : 𝑌 → 𝑋 the
lift of 𝑓 between the universal covers of𝑌 and 𝑋 . Then the 𝑓 ∗𝜚-equivariant map 𝑢̃◦ 𝑓 : 𝑌 → Δ(𝐺)
is pluriharmonic and has logarithmic energy growth.

0.2. An application. — Esnault asked whether a smooth projective variety with an infinite funda-
mental group has non-trivial symmetric differentials. This was confirmed by Brunebarbe, Klingler,
and Totaro [BKT13, Theorem 0.1] in the linear case, when 𝑋 is a compact Kähler manifold.
Theorem 0.1 ( [BKT13]). — Let 𝑋 be a compact Kähler manifold. If there is a linear representation
𝜚 : 𝜋1(𝑋) → GL𝑁 (K) withK being any field such that 𝜚(𝜋1(𝑋)) is infinite, then𝐻0(𝑋, Sym𝑘Ω𝑋) ≠ 0
for some positive integer 𝑘 .

Building on ideas from previous works [Kat97,Zuo96,Eys04,Kli13,BKT13] and using Theorem A,
we extend Theorem 0.1 to the quasi-projective setting.
Theorem B. — Let 𝑋 be a smooth quasi-projective variety, and let 𝜏 : 𝜋1(𝑋) → GL𝑁 (K) be a linear
representation where K is any field. Let 𝑋 be a smooth projective compactification of 𝑋 such that
Σ := 𝑋\𝑋 is a simple normal crossing divisor. If the image of 𝜏 is an infinite group, then there is a
positive integer 𝑘 such that 𝐻0(𝑋, Sym𝑘Ω

𝑋
(logΣ)) ≠ 0.

Let us mention that Theorem A has further applications in other areas. For more recent develop-
ments, we refer readers to [CDY22,DYK23,DY24,DM24b].

0.3. Notation and Convention. —
(1) Unless otherwise specified, algebraic varieties are assumed to be connected and defined over the

field of complex numbers.
(2) A log smooth pair (𝑋, Σ) consists of a smooth projective variety 𝑋 and a simple normal crossing

divisor Σ on 𝑋 . We denote by 𝑋 := 𝑋\Σ, and 𝜋𝑋 : 𝑋 → 𝑋 the universal cover map.
(3) Let 𝑋 be a smooth projective variety. A line bundle 𝐿 on 𝑋 is sufficiently ample if there exists a

projective embedding 𝜄 : 𝑋 ↩→ P𝑁 such that 𝐿 = 𝜄∗𝒪P𝑁 (𝑑) for some 𝑑 ⩾ 3.
(4) A linear representation 𝜚 : 𝜋1(𝑋) → GL𝑁 (𝐾) with 𝐾 some field is called reductive if the Zariski

closure of 𝜚(𝜋1(𝑋)) is a reductive algebraic group over 𝐾 .
If 𝑌 is a closed smooth subvariety of 𝑋 , we denote by 𝜚𝑌 : 𝜋1(𝑌 ) → 𝐺 (𝐾) the composition of
the natural homomorphism 𝜋1(𝑌 ) → 𝜋1(𝑋) and 𝜚.
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(5) Denote by D the unit disk in C, and by D∗ the punctured unit disk. We write D𝑟 := {𝑧 ∈ C | |𝑧 | <
𝑟}, D∗

𝑟 := {𝑧 ∈ C | 0 < |𝑧 | < 𝑟}, and D𝑟1,𝑟2 := {𝑧 ∈ C | 𝑟1 < |𝑧 | < 𝑟2}.
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Euclidean buildings in the (unpublished) work of the second and fourth authors [DM21]. We would
like to thank Michel Brion, Hélène Esnault, Auguste Hébert, Nicolas Monod, Guy Rousseau for
useful discussions and comments. Damian Brotbek is supported by the grant Lorraine Université
d’Excellence - Future Leader. Georgios Daskalopoulos is supported in part by NSF DMS-2105226.
Ya Deng is supported by the ANR grant Karmapolis (ANR-21-CE40-0010). Chikako Mese is
supported in part by NSF DMS-2005406 and DMS-2304697. We also thank the referee for his/her
very helpful suggestions in improving the clarity of the paper.

1. Preliminaries

1.1. NPC spaces and Euclidean buildings. — For the definitions in this subsection, we refer the
readers to [BH99,Rou09,KP23].
Definition 1.1 (Geodesic space). — Let (𝑋, 𝑑𝑋) be a metric space. A curve 𝛾 : [0, ℓ] → 𝑋 into 𝑋
is called a geodesic if the length 𝑑𝑋 (𝛾(𝑎), 𝛾(𝑏)) = 𝑏 − 𝑎 for any subinterval [𝑎, 𝑏] ⊂ [0, ℓ]. A metric
space (𝑋, 𝑑𝑋) is a geodesic space if there exists a geodesic connecting every pair of points in 𝑋 .
Definition 1.2 (NPC space). — An NPC (non-positively curved) space (𝑋, 𝑑𝑋) is a complete geodesic
space that satisfies the following condition: for any three points 𝑃,𝑄, 𝑅 ∈ 𝑋 and a geodesic 𝛾 :
[0, ℓ] → 𝑋 with 𝛾(0) = 𝑄 and 𝛾(ℓ) = 𝑅, we have

𝑑2(𝑃,𝑄𝑡 ) ≤ (1 − 𝑡)𝑑2(𝑃,𝑄) + 𝑡𝑑2(𝑃, 𝑅) − 𝑡 (1 − 𝑡)𝑑2(𝑄, 𝑅)
for any 𝑡 ∈ [0, 1], where 𝑄𝑡 := 𝛾(𝑡ℓ).

A smooth Riemannian manifold with nonpositive sectional curvature is an NPC space. Among
these, the Bruhat-Tits building Δ(𝐺) associated with a semisimple algebraic group 𝐺 defined over
a non-archimedean local field 𝐾 is noteworthy an example of NPC spaces. We will not provide the
lengthy definition of Bruhat-Tits buildings here, but interested readers can find precise definitions in
references such as [Rou09] and [KP23]. It is noteworthy that 𝐺 (𝐾) acts isometrically on the building
Δ(𝐺), and transitively on its set of apartments. Here, 𝐺 (𝐾) denotes the group of 𝐾-points of 𝐺.
The dimension of Δ(𝐺) is equal to the 𝐾-rank of the algebraic group 𝐺, which is the dimension of a
maximal 𝐾-split torus in 𝐺.

1.2. Harmonic maps to NPC spaces. — Consider a map 𝑓 : Ω → 𝑍 from an 𝑛-dimensional Rie-
mannian manifold (Ω, 𝑔) to an NPC space (𝑍, 𝑑𝑍 ). When the target space 𝑍 is a smooth Riemannian
manifold of nonpositive sectional curvature, the energy of a smooth map 𝑓 : Ω → 𝑍 is

𝐸 𝑓 =

∫
Ω

|𝑑𝑓 |2dvol𝑔

where (Ω, 𝑔) is a Riemannian domain and dvol𝑔 is the volume form of Ω. We say 𝑓 : Ω → 𝑍 is
harmonic if it is locally energy minimizing; i.e. for any 𝑥 ∈ Ω, there exists 𝑟 > 0 such that the
restriction 𝑢 |𝐵𝑟 (𝑥 ) minimizes energy amongst all maps 𝑣 : 𝐵𝑟 (𝑥) → 𝑍 with the same boundary values
as 𝑢 |𝐵𝑟 (𝑥 ) . Here 𝐵𝑟 (𝑥) denotes the geodesic ball of radius 𝑟 centered at 𝑥.

In this paper, we mainly consider the target 𝑍 to be NPC spaces, not necessarily smooth. Let us
recall the definition of harmonic maps in this context (cf. [KS93] for more details).

Let (Ω, 𝑔) be a bounded Lipschitz Riemannian domain. Let Ω𝜀 be the set of points in Ω at a
distance least 𝜀 from 𝜕Ω. Denote by 𝑆𝜀 (𝑥) := 𝜕𝐵𝜀 (𝑥). We say 𝑓 : Ω → 𝑍 is an 𝐿2-map (or that
𝑓 ∈ 𝐿2(Ω, 𝑍) ) if for some point 𝑃 ∈ Ω, we have∫

Ω

𝑑2( 𝑓 (𝑥), 𝑃)𝑑vol𝑔 < ∞.

For 𝑓 ∈ 𝐿2(Ω, 𝑍), define

𝑒
𝑓
𝜀 : Ω → R, 𝑒

𝑓
𝜀 (𝑥) =

{∫
𝑦∈𝑆𝜀 (𝑥 )

𝑑2 ( 𝑓 (𝑥 ) , 𝑓 (𝑦) )
𝜀2

𝑑𝜎𝑥,𝜀

𝜀𝑛−1 𝑥 ∈ Ω𝜀

0 otherwise
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where 𝜎𝑥,𝜀 is the induced measure on 𝑆𝜀 (𝑥). We define a family of functionals

𝐸
𝑓
𝜀 : 𝐶𝑐 (Ω) → R, 𝐸

𝑓
𝜀 (𝜑) =

∫
Ω

𝜑𝑒
𝑓
𝜀𝑑vol𝑔 .

We say 𝑓 has finite energy, denoted by 𝑓 ∈ 𝑊1,2(Ω, 𝑍), if

𝐸 𝑓 [Ω] := sup
𝜑∈𝐶𝑐 (Ω) ,0≤𝜑≤1

lim sup
𝜀→0

𝐸
𝑓
𝜀 (𝜑) < ∞.

In this case, it was proven in [KS93, Theorem 1.10] that there exists an absolutely continuous function
𝑒 𝑓 (𝑥) with respect to Lebesgue measure, which we call the energy density, such that 𝑒 𝑓𝜀 (𝑥)𝑑vol𝑔
converges weakly to 𝑒 𝑓 (𝑥)dvol𝑔 as 𝜀 tends to 0. In analogy to the case of smooth targets, we write
|∇ 𝑓 |2(𝑥) in place of 𝑒 𝑓 (𝑥). Hence |∇ 𝑓 |2(𝑥) ∈ 𝐿1

loc(Ω). In particular, the (Korevaar-Schoen) energy
of 𝑓 in Ω is

𝐸 𝑓 [Ω] =
∫
Ω

|∇ 𝑓 |2dvol𝑔 .(1.1)

Definition 1.3 (Harmonic maps). — We say a continuous map 𝑓 : Ω → 𝑍 from a Lipschitz domain
Ω is harmonic if it is locally energy minimizing; more precisely, at each 𝑝 ∈ Ω, there exists an open
neighborhood Ω𝑝 of 𝑝 such that all comparison maps which agree with 𝑢 outside of this neighborhood
have no less energy.

For 𝑉 ∈ ΓΩ where ΓΩ is the set of Lipschitz vector fields on Ω, in [KS93, §2.3], the directional
energy | 𝑓∗(𝑉) |2 is similarly defined. The real valued 𝐿1

loc function | 𝑓∗(𝑉) |2 generalizes the norm
squared on the directional derivative of 𝑓 . The generalization of the pull-back metric is the continuous,
symmetric, bilinear, non-negative and tensorial operator

𝜋 𝑓 (𝑉,𝑊) = ΓΩ × ΓΩ → 𝐿1(Ω,R)
where

𝜋 𝑓 (𝑉,𝑊) = 1
2
| 𝑓∗(𝑉 +𝑊) |2 − 1

2
| 𝑓∗(𝑉 −𝑊) |2.

We refer to [KS93, §2.3] for more details.
Let (𝑥1, . . . , 𝑥𝑛) be local coordinates of (Ω, 𝑔), and 𝑔 = (𝑔𝑖 𝑗), 𝑔−1 = (𝑔𝑖 𝑗) be the local metric

expressions. Then energy density function of 𝑓 can be written (cf. [KS93, (2.3vi)])

|∇ 𝑓 |2 = 𝑔𝑖 𝑗𝜋 𝑓 (
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥 𝑗
)

Next assume (Ω, 𝑔) is a Hermitian domain and let (𝑧1 = 𝑥1 + 𝑖𝑥2, . . . , 𝑧𝑛 = 𝑥2𝑛−1 + 𝑖𝑥2𝑛) be local
complex coordinates. If we extend 𝜋 𝑓 linearly over C, then we have

1
4
|∇ 𝑓 |2 = 𝑔𝑖 𝑗𝜋 𝑓 (

𝜕 𝑓

𝜕𝑧𝑖
,
𝜕 𝑓

𝜕𝑧 𝑗
).

Definition 1.4 (Locally Lipschitz). — A continuous map 𝑓 : Ω → 𝑍 is called locally Lipschitz
if for any 𝑝 ∈ Ω, there exists an open neighborhood Ω𝑝 of 𝑝 and a constant 𝐶 > 0 such that
𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐶𝑑 (𝑥, 𝑦) for any 𝑥, 𝑦 ∈ Ω𝑝.
Remark 1.5. — It follows from the definition of |∇ 𝑓 |2 that if 𝑓 is locally Lipschitz, then for any
𝑝 ∈ Ω, there exists an open neighborhood Ω𝑝 of 𝑝 and a constant 𝐶 > 0 such that over Ω𝑝 one has
|∇ 𝑓 |2 ≤ 𝐶.

1.3. Admissible coordinates. — The following definition of admissible coordinates introduced in
[Moc06] will be used throughout the paper.
Definition 1.6. — (Admissible coordinates) Let 𝑋 be a complex manifold and let Σ be a simple
normal crossing divisor in 𝑋 . Let 𝑥 be a point of Σ, and assume that {Σ 𝑗} 𝑗=1,...,ℓ are components of Σ
containing 𝑥. An admissible coordinate neighborhood of 𝑥 is the tuple (𝑈; 𝑧1, . . . , 𝑧𝑛; 𝜑) (or simply
(𝑈; 𝑧1, . . . , 𝑧𝑛) if no confusion arises) where

(a) 𝑈 is an open subset of 𝑋 containing 𝑥.
(b) There is a holomorphic isomorphism 𝜑 : 𝑈 → D𝑛 such that 𝜑(Σ 𝑗) = (𝑧 𝑗 = 0) for any

𝑗 = 1, . . . , ℓ.
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We define a Poincaré-type metric 𝜔𝑃 on (D∗)ℓ × D𝑛−ℓ by

𝜔𝑃 =

ℓ∑︁
𝑗=1

√
−1𝑑𝑧 𝑗 ∧ 𝑑𝑧 𝑗

|𝑧 𝑗 |2(log |𝑧 𝑗 |2)2 +
𝑛∑︁

𝑘=ℓ+1

√
−1𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘 .(1.2)

We note that, using the notation from the definition, one can construct a global complete metric 𝑔 on
𝑋 of Poincaré-type at every point of Σ, provided that 𝑋 is a compact Kähler manifold.

We briefly recall the construction. Fix any Kähler metric 𝜔 on 𝑋 . Write Σ =
∑𝑘

𝑗=1 Σ 𝑗 as a sum of
irreducible components. For each 𝑗 = 1, . . . , 𝑘 , choose a smooth Hermitian metric | · | 𝑗 on 𝒪

𝑋
(Σ 𝑗)

and take a section 𝜎𝑗 ∈ 𝐻0(𝑋,𝒪
𝑋
(Σ 𝑗)) such that Σ 𝑗 = (𝜎𝑗 = 0) and |𝜎𝑗 | 𝑗 < 1 over 𝑋 . Then, it

suffices to set, for some 𝐶 ∈ R>0 large enough,

(1.3) 𝑔 := 𝐶𝜔 +
𝑘∑︁
𝑗=1

𝑑 |𝜎𝑗 | 𝑗 ∧ 𝑑𝑐 |𝜎𝑗 | 𝑗
|𝜎𝑗 |2𝑗 (log |𝜎𝑗 |2𝑗)2

.

This metric is said to be of Poincaré-type around Σ, meaning that for any 𝑥 ∈ Σ and for any admissible
coordinates centered at 𝑥, there exist constants 𝐶1, 𝐶2 > 0 such that

𝐶1𝜔𝑃 ≤ 𝑔 ≤ 𝐶2𝜔𝑃 .

2. Existence of Harmonic maps to Bruhat-Tits buildings

In this section, we prove the existence assertion of equivariant pluriharmonic map in Theorem A,
together with a weaker version of Theorem A.(i), and Theorem A.(ii). Several technical steps are
deferred to the appendix.
Theorem 2.1 (Existence of (pluri-)harmonic maps). — Let (𝑋, Σ) be a log smooth pair, 𝐺 be a
semisimple algebraic group defined over a non-archimedean local field 𝐾 , and Δ(𝐺) be the Bruhat-
Tits building of𝐺. Let 𝐿 be a sufficiently ample line bundle on 𝑋 . Let 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾) be a Zariski
dense representation. Then there exists a 𝜚-equivariant pluriharmonic map 𝑢̃ : 𝑋 → Δ(𝐺), that
is locally Lipschitz, and has logarithmic energy growth with respect to (𝑋, 𝐿) (cf. Definition 2.15).
Moreover, 𝑢̃ is harmonic with respect to any Kähler metric of 𝑋 .

2.1. Preliminary lemmas. — Throughout the rest of this section, let 𝐺 be a semisimple algebraic
group defined over a non-archimedean local field 𝐾 , and Δ(𝐺) be the Bruhat-Tits building of 𝐺. We
denote by 𝑑 (•, •) the distance function of Δ(𝐺). We fix a Zariski dense representation 𝜚 : 𝜋1(𝑋) →
𝐺 (𝐾) as in Theorem 2.1. Below, we summarize some results regarding the action of 𝜚.
Lemma 2.2. — If 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾) is Zariski dense, then the following holds:
(i) The action of 𝐻 := 𝜚(𝜋1(𝑋)) on Δ(𝐺) is without fixed points at infinity.
(ii) Δ(𝐺) contains a non-empty closed minimal convex 𝐻-invariant subset C.
Here, C is minimal means that there does not exist a non-empty closed convex strict subset of C
invariant under 𝐻.

We refer the readers to [BH99, Chapter II.8] for the definition of boundary at infinity of CAT(0)
spaces. Roughly speaking, it is the set of equivalent classes of geodesic rays.
Proof. — If 𝐻 fixes a point at infinity, then 𝐻 is contained 𝑃(𝐾) where 𝑃 is a proper parabolic
subgroup of 𝐺. This contradicts the fact that 𝐻 is Zariski dense and proves Item (i). Item (ii) follows
from [CM09, Theorem 4.3, (A.ii)]. We can argue as follows: suppose Δ(𝐺) has no minimal closed
convex 𝐻-invariant set. Then it contains a decreasing sequence 𝑋𝑛 of closed convex 𝐻-invariant sets
whose intersection is empty. Choose now a base point 𝑥 in Δ(𝐺) and consider the projection 𝑥𝑛
of 𝑥 to 𝑋𝑛. Namely, 𝑥𝑛 is the unique point in 𝑋𝑛 such that 𝑑 (𝑥, 𝑥𝑛) = inf𝑦∈𝑋𝑛

𝑑 (𝑥, 𝑦). Such map
exists by [BH99, Proposition 2.4.(1)]. This sequence is unbounded, otherwise the intersection was not
empty. Since the space is locally compact, it converges to some point at infinity. This point at infinity
is fixed by any ℎ in 𝐻 because the distance 𝑑 (ℎ.𝑥𝑛, 𝑥𝑛) is bounded by 𝑑 (ℎ.𝑥, 𝑥) by Lemma 2.3 below.
This proves Item (ii). □
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Lemma 2.3. — There exists a unique closest point projection map Π : Δ(𝐺) → C, i.e., for any
𝑥 ∈ Δ(𝐺), there exists a unique Π(𝑥) ∈ C such that 𝑑 (𝑥,Π(𝑥)) = inf𝑦∈C 𝑑 (𝑥, 𝑦). Such projection
map Π : Δ(𝐺) → C is distance decreasing, and 𝐻-equivariant; i.e. Π(𝑔𝑥) = 𝑔Π(𝑥) for any 𝑔 ∈ 𝐻
and any 𝑥 ∈ Δ(𝐺).
Proof. — The existence assertion for such projection mapΠ follows from [BH99, Proposition 2.4.(1)].
For 𝑔 ∈ 𝐻 and any 𝑦 ∈ C, we have

𝑑 (𝑔Π(𝑥), 𝑔𝑥) = 𝑑 (Π(𝑥), 𝑥) ≤ 𝑑 (𝑔−1𝑦, 𝑥) = 𝑑 (𝑦, 𝑔𝑥).
This implies Π(𝑔𝑥) = 𝑔Π(𝑥). By [BH99, Proposition 2.4.(4)], Π is distance decreasing. This proves
Item (ii). □

Remark 2.4. — The proof of Theorem 2.1 proceeds by induction on the dimension of the domain
𝑋 . To carry out this induction, we must first establish the uniqueness of the pluriharmonic map at
each dimension. However, it is currently unknown whether an equivariant pluriharmonic map into
Δ(𝐺) is unique. To address this issue, we construct an equivariant pluriharmonic map into a closed
minimal convex set C of Lemma 2.2 and show that it is the unique equivariant pluriharmonic map into
C. This step is necessary due to the existence of examples of algebraic subgroups 𝐻 of a semisimple
algebraic group 𝐺 with a proper, non-empty, closed minimal convex 𝐻-invariant subset of Δ(𝐺) (cf.
Example 2.5 below).
Example 2.5. — Let 𝐾 be a non-archimedean local field and let 𝐿 be a finite extension of 𝐾 . Assume
that 𝐺 is an algebraic group defined over 𝐾 and split over 𝐿. Then 𝐺 (𝐾) is Zariski dense and
unbounded in 𝐺 (𝐿), and the Bruhat-Tits building Δ(𝐺, 𝐾) is a proper, closed, unbounded 𝐺 (𝐾)-
invariant subset embedded in Δ(𝐺, 𝐿). As an example, if 𝐺 = SL2, 𝐾 = Q2, and 𝐿 = Q2(

√
2), then

Δ(𝐺, 𝐿) is a tree and Δ(𝐺, 𝐾) is a closed subtree. This illustrates the importance of considering the
existence of proper, non-empty, closed minimal convex 𝐻-invariant subsets in Δ(𝐺).

As a closed convex subset of an NPC space, C is itself is a NPC space. Since C is 𝜚(𝜋1(𝑋))-
invariant, we can define

(2.1) 𝜚̂ : 𝜋1(𝑋) → Isom(C)
by setting 𝜚̂(𝛾) to be the restriction of 𝜚(𝛾) to C. Here Isom(C) denotes the isometry group of C. To
lighten the notation, we abusively write 𝜚 for 𝜚̂.
Lemma 2.6. — 𝜚(𝜋1(𝑋)) ⊂ Isom(C) consists of only semisimple elements, i.e., for any 𝑔 ∈
𝜚(𝜋1(𝑋)), there exists 𝑃0 ∈ C such that inf𝑃∈C 𝑑 (𝑃, 𝑔𝑃) = 𝑑 (𝑃0, 𝑔𝑃0).
Proof. — Since 𝐺 is semisimple, Δ(𝐺) is a Euclidean building without a Euclidean factor. Let
𝑔̂ ∈ 𝜚(𝜋1(𝑋)) such that 𝑔̂ = 𝑔 |C for some 𝑔 ∈ 𝐺 (𝐾). By [Par00, Theorem 4.1] and the assumption
that Δ(𝐺) does not have a Euclidean factor, 𝑔 is either elliptic or hyperbolic. That is, there exists
𝑃0 ∈ Δ(𝐺) such that min𝑃∈Δ(𝐺) 𝑑 (𝑃, 𝑔𝑃) = 𝑑 (𝑃0, 𝑔𝑃0). By Lemma 2.3, Π is distance decreasing
and 𝜚(𝜋1(𝑋))-invariant. It yields

inf
𝑃∈Δ(𝐺)

𝑑 (𝑃, 𝑔𝑃) = 𝑑 (𝑃0, 𝑔𝑃0) ⩾ 𝑑 (Π(𝑃0),Π(𝑔𝑃0)) = 𝑑 (Π(𝑃0), 𝑔Π(𝑃0))(2.2)

⩾ inf
𝑃∈C

𝑑 (𝑃, 𝑔𝑃) ⩾ inf
𝑃∈Δ(𝐺)

𝑑 (𝑃, 𝑔𝑃).

In particular,

𝑑 (Π(𝑃0), 𝑔̂Π(𝑃0)) = 𝑑 (Π(𝑃0), 𝑔Π(𝑃0)) = inf
𝑃∈C

𝑑 (𝑃, 𝑔𝑃) = inf
𝑃∈C

𝑑 (𝑃, 𝑔̂𝑃).

Hence 𝑔̂ is a semisimple isometry of C. □

Definition 2.7 (Translation length). — For any 𝛾 ∈ 𝜋1(𝑋), the translation length of 𝜚(𝛾) is

𝐿𝛾 := inf
𝑃∈Δ(𝐺)

𝑑 (𝑃, 𝜚(𝛾)𝑃) (2.2)
= inf

𝑃∈C
𝑑 (𝑃, 𝜚(𝛾)𝑃).(2.3)

2.2. Equivariant maps and sections. — Endow 𝑋 with a Kähler metric 𝑔. Let C be as in Lemma 2.2
and 𝜚 : 𝜋1(𝑋) → Isom(C) be as in (2.1). The set of all 𝜚-equivariant maps into C are in one-to-one
correspondence with the set of all sections of the fiber bundle Π : 𝑋 ×𝜚 C → 𝑋 . More precisely, for
a 𝜚-equivariant map 𝑓 : 𝑋 → C, we define a section of Π by setting 𝑓 (𝜋𝑋 (𝑝)) = [(𝑝, 𝑓 (𝑝))], where
𝑝 is any point in 𝑋 . Since the energy density function |∇ 𝑓 |2 on 𝑋 is a 𝜋1(𝑋)-invariant function, it
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descends to a function on 𝑋 , denoted by |∇ 𝑓 |2. We also define the energy of 𝑓 in any open subset 𝑈
of 𝑋 by setting

𝐸 𝑓 [𝑈] =
∫
𝑈

|∇ 𝑓 |2𝑑vol𝑔 .(2.4)

2.3. Pullback bundles. — Let 𝑓 : 𝑌 → 𝑋 be a morphism between smooth quasi-projective varieties.
Let 𝑌 be a connected component of 𝑋 ×𝑋 𝑌 . Then we have the following commuting diagram:

𝑌

𝑌 𝑋

𝑌 𝑋

𝜋
𝑌

𝜋𝑌
𝑓

𝜋̂𝑌 𝜋𝑋

𝑓

It induces a fiber bundle Π̂𝑌 : 𝑌 × 𝑓 ∗ 𝜚 C → 𝑌 , such that one has the following commuting diagram:

𝑌 × 𝑓 ∗ 𝜚 C 𝑋 ×𝜚 C

𝑌 𝑋.

𝐹

Π̂𝑌 Π𝑋

𝑓

Note that, given any section 𝑢 : 𝑋 → 𝑋 ×𝜚 C of Π𝑋, the composition

𝑢 ◦ 𝑓 : 𝑌 → 𝑋 ×𝜚 C

defines a section of the fiber bundle 𝑌 × 𝑓 ∗ 𝜚 C ≃ 𝑓 ∗(𝑋 ×𝜚 C) → 𝑌 , which in turn defines a 𝑓 ∗𝜚-
equivariant map 𝑢̂ 𝑓 : 𝑌 → C. Define 𝑢 𝑓 := 𝑢̂ 𝑓 ◦ 𝜋𝑌 , which is an 𝑓 ∗𝜚-equivariant map 𝑌 → C. It
defines a section

𝑢 𝑓 : 𝑌 → 𝑌 × 𝑓 ∗ 𝜚 C.
In this paper, we will mainly focus on the special case where 𝑌 is a closed smooth subvariety of 𝑋 and
𝜄 : 𝑌 → 𝑋 is the inclusion map. In this cases, we will use the notation

𝑢𝑌 : 𝑌 → 𝑌 ×𝜚𝑌 C.(2.5)

in place of 𝑢 𝜄, where 𝜚𝑌 : 𝜋1(𝑌 ) → Isom(C) denotes the composition of 𝜄∗ : 𝜋1(𝑌 ) → 𝜋1(𝑋) and 𝜚.
On the other hand, for any section 𝑢 : 𝑌 → 𝑌 × 𝑓 ∗ 𝜚 C of the fiber bundle 𝑌 × 𝑓 ∗ 𝜚 C → 𝑌 , the

composition of 𝑢 with the natural map 𝑌 × 𝑓 ∗ 𝜚 C → 𝑋 ×𝜚 C is a map 𝑌 → 𝑋 ×𝜌 C. For notational
simplicity, we will abusively denote this map as

(2.6) 𝑢 : 𝑌 → 𝑋 ×𝜚 C.

2.4. Regularity results of Gromov-Schoen. — Let 𝑋 be a hermitian manifold and let 𝑢̃ : 𝑋 → Δ(𝐺)
be a 𝜚-equivariant harmonic map. Following Section 2.3, let 𝑢 : 𝑋 → 𝑋 ×𝜚 Δ(𝐺) be the section
corresponding to 𝑢̃. We recall some results in [GS92].
Theorem 2.8 ( [GS92], Theorem 2.4). — A harmonic map 𝑢̃ : 𝑋 → Δ(𝐺) is locally Lipschitz
continuous. □
Definition 2.9 (Regular points and singular points). — A point 𝑥 ∈ 𝑋 is said to be a regular point
of 𝑢̃ if there exists a neighborhood N of 𝑥 and an apartment 𝐴 ⊂ Δ(𝐺) such that 𝑢̃(N) ⊂ 𝐴. A
singular point of 𝑢̃ is a point in 𝑋 that is not a regular point. Since 𝑢̃ is 𝜚-equivariant and 𝐺 (𝐾)
acts transitively on the apartments of Δ(𝐺), it follows that if 𝑥 ∈ 𝑋 is a regular point (resp. singular
point) of 𝑢̃, then every point of 𝜋−1

𝑋
(𝜋𝑋 (𝑥)) is a regular point (resp. singular point) of 𝑢̃. We denote

by R(𝑢̃) (resp. S(𝑢̃)) the set of all regular points (resp. singular points) of 𝑢̃ and let R(𝑢) = 𝜋𝑋 (R(𝑢̃))
(resp. S(𝑢) = 𝜋𝑋 (S(𝑢̃))).
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Lemma 2.10 ( [GS92], Theorem 6.4). — The set S(𝑢) is a closed subset of 𝑋 of Hausdorff codi-
mension at least two. For any compact subdomain Ω1 of 𝑋 , there is a sequence of Lipschitz functions
{𝜓𝑖} with 𝜓𝑖 ≡ 0 in a neighborhood of S(𝑢̃) ∩ Ω̄1, 0 ≤ 𝜓𝑖 ≤ 1 and 𝜓𝑖 (𝑥) → 1 for all 𝑥 ∈ Ω1\S(𝑢)
such that

lim
𝑖→∞

∫
Ω1

|∇𝑢 |2 |∇𝜓𝑖 |𝜔𝑛 = 0

and
lim
𝑖→∞

∫
Ω1

|∇∇𝑢 | |∇𝜓𝑖 |𝜔𝑛 = 0.

□

2.5. A Bertini-type theorem. — In this subsection, we will prove a Bertini-type theorem that plays
a crucial role in proving the pluriharmonicity of 𝑢̃ in Theorem 2.1.
Proposition 2.11. — Let (𝑋,Σ) be a log smooth pair with 𝑛 := dim 𝑋 ⩾ 2. Let 𝐿 be a very ample
line bundle on 𝑋 and fix an integer 𝑘 ⩾ 3. Set 𝑇 = |𝐿𝑘 |×(𝑛−1) . Consider the universal complete
intersection

ℛ =

{
(𝑥, 𝐻1, · · ·𝐻𝑛−1) ∈ 𝑋 × 𝑇 | 𝑥 ∈ 𝐻1 ∩ · · · ∩ 𝐻𝑛−1

}
⊂ 𝑋 × 𝑇,

and let ℛ := ℛ ∩ (𝑋 × 𝑇) be the restriction of the universal family to 𝑋 × 𝑇 . Denote by 𝜋 : ℛ → 𝑇

and 𝜋 : ℛ → 𝑇 , the canonical projections induced by the second projection 𝑋 × 𝑇 → 𝑇 . Let
𝑇◦ ⊂ 𝑇 be the Zariski open subset such that, for every (𝐻1, . . . , 𝐻𝑛−1) ∈ 𝑇◦, the hypersurfaces
𝐻1, . . . , 𝐻𝑛−1 are smooth, and the divisor 𝐻1+ · · ·+𝐻𝑛−1+Σ is simple normal crossing. Let us denote
by 𝜋◦ : ℛ◦ = 𝜋−1(𝑇◦) → 𝑇◦ be the restricted family. Then:
(i) The open subset 𝑇◦ is non-empty.
(ii) For any point 𝑥 ∈ 𝑋 and 𝑣 ∈ 𝑇𝑥𝑋 , there exists some (𝐻1, . . . , 𝐻𝑛−1) ∈ 𝑇◦ such that 𝑥 ∈

𝐻1 ∩ . . . ∩ 𝐻𝑛−1 and 𝐻1 ∩ . . . ∩ 𝐻𝑛−1 is tangent to 𝑣.
(iii) The family 𝜋◦ : ℛ◦ → 𝑇◦ is locally topologically trivial.

The proof of Proposition 2.11 relies on the following Bertini-type result.
Lemma 2.12. — Let 𝑁 ≥ 3 be a positive integer. Let 𝑌 ⊂ P𝑁 be a smooth projective subvariety of
dimension 𝑚 ≥ 1. Fix an integer 𝑑 ⩾ 3. Let 𝑥 ∈ P𝑁 and 𝑣 ∈ 𝑇P𝑁 ,𝑥 . Let 𝑃𝑥,𝑣 ⊂ |𝒪P𝑁 (𝑑) | be the
general hypersurfaces in P𝑁 of degree 𝑑 which pass through 𝑥 and are tangent to 𝑣. If dim𝑌 ⩾ 2, or
𝑥 ∉ 𝑌 , then 𝑃𝑥,𝑣 is non-empty and
(i) a general element of 𝑃𝑥,𝑣 is smooth;
(ii) a general element of 𝑃𝑥,𝑣 intersects with 𝑌 transversely;
(iii) the base locus of 𝑃𝑥,𝑣 is {𝑥}.
Proof. — Consider the incidence variety

𝐼 =
{
(𝑦, 𝐻) ∈ 𝑌 × 𝑃𝑥,𝑣 | 𝑦 ∈ 𝐻 and 𝑇𝑦𝑌 ⊂ 𝑇𝑦𝐻

}
.

Then 𝐼 parametrizes the set of points (𝑦, 𝐻) such that 𝐻 intersects 𝑌 non-transversally at 𝑦. We first
prove that 𝑝2(𝐼) ≠ 𝑃𝑥,𝑣 where 𝑝2 : (𝑦, 𝐻) ↦→ 𝐻 is the second projection. We shall do this by a
classical dimension count.

Fix 𝑦 ∈ 𝑌 and denote by

𝐼𝑦 = 𝑝−1
1 ({𝑦}) � {𝐻 ∈ 𝑃𝑥,𝑣 | (𝑦, 𝐻) ∈ 𝐼} ⊂ 𝑃𝑥,𝑣

where 𝑝1 : (𝑦, 𝐻) ↦→ 𝑦 is the first projection. Consider the 1-jet map

J1
𝑥 : 𝐻0(P𝑁 ,𝒪P𝑁 (𝑑)) → 𝒪P𝑁 (𝑑) ⊗ 𝒪P𝑁 ,𝑥/𝔪2

P𝑁 ,𝑥
(2.7)

which is surjective as 𝑑 ≥ 3. Note that (𝑥, 𝑣) ∈ 𝑇𝑋,𝑥 defines a linear map

𝐿𝑣 : 𝒪P𝑁 ,𝑥/𝔪2
P𝑁 ,𝑥

→ C2

given by 𝐿𝑣 ( 𝑓 ) = ( 𝑓 (𝑥), 𝑑𝑓 (𝑣)). Let 𝑉𝑥,𝑣 := ker(𝐿𝑣 ◦ J1
𝑥). For any 𝐻 ∈ |𝑉𝑥,𝑣 |, we have 𝑥 ∈ 𝐻 and

𝐻 is tangent to 𝑣. Hence |𝑉𝑥,𝑣 | = 𝑃𝑥,𝑣. Note that dim𝑉𝑥,𝑣 = dim𝐻0(P𝑁 ,𝒪P𝑁 (𝑑)) − 2. Consider the
map

J1
𝑌,𝑦 : 𝐻0(P𝑁 ,𝒪P𝑁 (𝑑)) → 𝒪P𝑁 (𝑑) |𝑌 ⊗ 𝒪𝑌,𝑦/𝔪2

𝑌,𝑦 � C
𝑚+1
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which is surjective as 𝑑 ≥ 3. Then | ker J1
𝑌,𝑦

∩𝑉𝑥,𝑣 | = 𝐼𝑦 .
Claim 2.13. — We have

codim𝑃𝑥,𝑣
𝐼𝑦

{
= 𝑚 + 1 if 𝑥 ≠ 𝑦
≥ 𝑚 − 1 if 𝑥 = 𝑦.

Proof. — We may suppose that 𝑥 = [1 : 0 : · · · : 0]. An element 𝐻 ∈ |𝒪P𝑁 (𝑑) | is given by a
homogenous polynomial of degree 𝑑,

𝐹 =
∑︁

𝑖0,...,𝑖𝑁
𝑖0+···+𝑖𝑁=𝑑

𝑎𝑖0,...,𝑖𝑁 𝑋
𝑖0
0 · · · 𝑋 𝑖𝑁

𝑁
.

Consider the inhomogeneous coordinate (𝑧1, . . . , 𝑧𝑁 ) := ( 𝑋1
𝑋0
, . . . ,

𝑋𝑁

𝑋0
). Then 𝐹 be can expressed as

𝑓0 :=
∑︁

𝑖0,...,𝑖𝑁
𝑖0+···+𝑖𝑁=𝑑

𝑎𝑖0,...,𝑖𝑁 𝑧
𝑖1
1 · · · 𝑧𝑖𝑛

𝑁
.(2.8)

We write 𝑣 :=
∑𝑁

𝑖=1 𝑏𝑖
𝜕
𝜕𝑧𝑖

|𝑥 . The condition 𝐻 ∈ |𝑉𝑥,𝑣 | is equivalent to

𝑎𝑑,0,...,0 = 0, 𝑏1𝑎𝑑−1,1,0...,0 + 𝑏2𝑎𝑑−1,0,1,0...,0 + . . . + 𝑏𝑁𝑎𝑑−1,0,...,1 = 0.(2.9)

Case 1: 𝑦 ≠ 𝑥. We may suppose that 𝑦 = [0 : 1 : 0 : · · · : 0]. On the open set (𝑋1 ≠ 0) ⊂ P𝑁 we
choose the coordinate (𝑧0, 𝑧2, . . . , 𝑧𝑁 ) := ( 𝑋0

𝑋1
,
𝑋2
𝑋1
. . . ,

𝑋𝑁

𝑋1
). One deshomogenizes 𝐹 to the polynomial

𝑓 = 𝑎1,𝑑−1,0,...,0𝑧0 + 𝑎0,𝑑,0,...,0 + 𝑎0,𝑑−1,1,0,...,0𝑧2 + · · · + 𝑎0,𝑑−1,0,...,0,1𝑧𝑁 + 𝑜(𝑧).
Therefore, the map

J1
𝑦 : 𝐻0(P𝑁 ,𝒪P𝑁 (𝑑)) → 𝒪P𝑁 (𝑑) ⊗ 𝒪P𝑁 ,𝑦/𝔪2

P𝑁 ,𝑦

is just given by

J1
𝑦 ( 𝑓 ) = 𝑎1,𝑑−1,0,...,0𝑧0 + 𝑎0,𝑑,0,...,0 + 𝑎0,𝑑−1,1,0,...,0𝑧2 + · · · + 𝑎0,𝑑−1,0,...,0,1𝑧𝑁 .

Since 𝑑 ≥ 3, it follows from (2.9) that

J1
𝑦 |𝑉𝑥,𝑣

: 𝑉𝑥,𝑣 → 𝒪P𝑁 (𝑑) ⊗ 𝒪P𝑁 ,𝑦/𝔪2
P𝑁 ,𝑦

is surjective. Therefore,

J1
𝑌,𝑦 |𝑉𝑥,𝑣

: 𝑉𝑥,𝑣 → 𝒪P𝑁 (𝑑) |𝑌 ⊗ 𝒪𝑌,𝑦/𝔪2
𝑌,𝑦 � C

𝑚+1

is also surjective. This implies that

codim𝑃𝑥,𝑣
𝐼𝑦 = rank (J1

𝑌,𝑦 |𝑉𝑥,𝑣
) = 𝑚 + 1.

Case 2: 𝑦 = 𝑥. In the inhomogeneous coordinates (𝑧1, . . . , 𝑧𝑁 ) introduced earlier, the map J1
𝑥 defined

in (2.7) can be expressed as

J1
𝑥 ( 𝑓0) = 𝑎𝑑,0,...,0 + 𝑎𝑑−1,1,0,...,0𝑧1 + · · · + 𝑎𝑑−1,0,...,0,1𝑧𝑁 ,(2.10)

where 𝑓0 is defined in (2.8). Then the rank of

J1
𝑥 |𝑉𝑥,𝑣

: 𝑉𝑥,𝑣 → 𝒪P𝑁 (𝑑) ⊗ 𝒪P𝑁 ,𝑥/𝔪2
P𝑁 ,𝑥

is 𝑁 − 1. It follows that rank J1
𝑌,𝑥

|𝑉𝑥,𝑣
≥ 𝑚 − 1. Therefore,

codim𝑃𝑥,𝑣
𝐼𝑦 = rank (J1

𝑌,𝑦 |𝑉𝑥,𝑣
) ≥ 𝑚 − 1.

□

By Claim 2.13, for any 𝑦 ∈ 𝑌\{𝑥}, one has

dim 𝐼𝑦 ⩽ dim 𝑃𝑥,𝑣 − 𝑚 − 1 and dim 𝐼𝑥 ⩽ dim 𝑃𝑥,𝑣 − 𝑚 + 1.

This implies that, when 𝑥 ∉ 𝑌 , one has

dim 𝐼 = 𝑚 + dim 𝑃𝑥,𝑣 − 𝑚 − 1 < dim 𝑃𝑥,𝑣 .
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When 𝑥 ∈ 𝑌 and dim𝑌 ⩾ 2, one has

dim 𝐼 = max{𝑚 + dim 𝑃𝑥,𝑣 − 𝑚 − 1, dim 𝑃𝑥,𝑣 − 𝑚 + 1} < dim 𝑃𝑥,𝑣 .

In conclusion, 𝑝2(𝐼) ⫋ 𝑃𝑥,𝑣. Note that for any 𝐻 ∈ 𝑃𝑥,𝑣\𝑝2(𝐼), 𝐻 contains 𝑥, 𝐻 is tangent to 𝑣, and
it intersects with 𝑌 transversely.

Now we want to show that a general element in 𝑃𝑥,𝑣 is smooth. We first note that the base locus of
𝑃𝑥,𝑣 is {𝑥}. By the Bertini Theorem, a general element of 𝑃𝑥,𝑣 is smooth away from 𝑥. We just need
to show that a general element of 𝑃𝑥,𝑣 is smooth at 𝑥. If 𝐹 ∈ 𝐻0(P𝑁 ,𝒪P𝑁 (𝑑)) is not smooth at 𝑥, then
J1
𝑥 ( 𝑓0) = 0, where 𝑓0(𝑧1, . . . , 𝑧𝑁 ) is the inhomogeneous polynomial of 𝐹 defined in (2.8). Therefore,

if we denote by 𝑉 ⊂ 𝑃𝑥,𝑣 the set of hypersurfaces which are singular at 𝑥, we have

codim𝑃𝑥,𝑣
𝑉 = 𝑁 − 1.

This proves that a general element of 𝐻 in 𝑃𝑥,𝑣 is smooth. □

We can now turn to the proof of the proposition.
Proof of Proposition 2.11. — We embed 𝑋 into some P𝑁 using the very ample line bundle 𝐿. The
fact that 𝑇◦ is non-empty is a direct consequence of Lemma 2.12.

Let us prove Proposition 2.11.(ii). Write Σ :=
∑𝑚

𝑖=1 Σ𝑖 . For any 𝐼 = {𝑖1, . . . , 𝑖𝑘} ⊂ {1, . . . , 𝑚},
we denote by Σ𝐼 := Σ𝑖1 ∩ . . . ∩ Σ𝑖𝑘 . Fix any 𝑑 ⩾ 3, and consider 𝑃𝑥,𝑣 ⊂ |𝒪P𝑁 (𝑑) | as above. Note
that 𝑥 ∉ Σ𝐼 for any 𝐼 ⊂ {1, . . . , 𝑚}. According to Lemma 2.12, a general hypersurface 𝐻1 in 𝑃𝑥,𝑣 is
smooth, which intersects 𝑋 transversely, and is also transverse to each Σ𝐼 with dimΣ𝐼 ⩾ 1. Therefore,
𝐻1∩Σ is a simple normal crossing divisor of the smooth projective variety 𝐻1, and 𝑣 ∈ 𝑇𝐻1,𝑥 . We now
apply Lemma 2.12 for the log smooth pair (𝐻1 ∩ 𝑋, 𝐻1 ∩Σ) inductively to find smooth hypersurfaces
𝐻2, . . . , 𝐻𝑛−1 ∈ |𝒪(𝑑) | satisfying the conditions in Proposition 2.11.(ii).

Let us now come to the last part of the statement. Let us consider ℛ
◦
= 𝜋−1(𝑇◦) and denote by

𝜋◦ : ℛ
◦ → 𝑇◦ the induced morphism. This is a smooth proper family of curves, and therefore each

fiber has the same genus which we shall denote by 𝑔. Moreover, since every fiber intersects with Σ

transversally, this intersection consists of exactly 𝑀 := (𝑑𝐿) (𝑛−1) · Σ distinct points. In particular,
the map 𝜋◦ |

Σ∩ℛ◦ : Σ ∩ ℛ
◦ → 𝑇◦ is étale. From there one deduces that for any small enough

(euclidean) open subset 𝑈 ⊂ 𝑇◦, there exists a homeomorphism 𝜑 : 𝜋−1(𝑈) → 𝑈 × 𝐶, such that
𝜑(Σ ∩ 𝜋−1(𝑈)) = {𝑞1, . . . , 𝑞𝑀 } where 𝐶 is a fixed curve of genus 𝑔 with 𝑀 distinct marked points.
This implies in particular that ℛ|𝑈 � 𝑈 × (𝐶\{𝑞1, . . . , 𝑞𝑀 ) is topologically trivial. □

2.6. Logarithmic energy growth (I). — Let (𝑋, Σ) be a log smooth pair. Let 𝐿 be a sufficiently
ample line bundle on 𝑋 . For a harmonic map on 𝑋 , we introduce the notion of logarithmic energy
growth with respect to (𝑋, 𝐿).

We first recall a Lefschetz hyperplane theorem for smooth quasi-projective varieties in [Eyr04,
Theorem 1.9].
Theorem 2.14. — Let (𝑋, Σ) be a log smooth pair. If 𝐿 is a very ample line bundle on 𝑋 , then for
any smooth hypersurface 𝐻 ∈ |𝐿 | such that 𝐻 + Σ is simple normal crossing (the choice of such a
hypersurface is generic by the Bertini theorem), the natural homomorphism 𝜋1(𝐻\Σ) → 𝜋1(𝑋\Σ) is
surjective. □

For any element 𝑠 ∈ 𝐻0(𝑋, 𝐿), we set 𝑌𝑠 := 𝑠−1(0), 𝑌𝑠 := 𝑌𝑠\Σ, and denote by 𝜄𝑌𝑠 : 𝑌𝑠 → 𝑋 the
inclusion map. Let

U = {𝑠 ∈ 𝐻0(𝑋, 𝐿) | 𝑌𝑠 is smooth and 𝑌𝑠 + Σ is a normal crossing divisor}.(2.11)

For 𝑞 ∈ 𝑋 , consider the subspace

𝑉 (𝑞) = {𝑠 ∈ 𝐻0(𝑋, 𝐿) | 𝑠(𝑞) = 0} and U(𝑞) = U ∩𝑉 (𝑞).(2.12)

According to Lemma 2.12, the sets U and U(𝑞) are Zariski dense open subsets of 𝐻0(𝑋, 𝐿) and 𝑉 (𝑞)
respectively.

According to Theorem 2.14, it follows that 𝜚(𝜋1(𝑌𝑠)) = 𝜚(𝜋1(𝑋)). This equality implies that if
𝜚(𝜋1(𝑋)) does not fix a point at infinity of C, then 𝜚𝑌𝑠 also does not fix a point at infinity of C.
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In [DM23a], the second and fourth authors introduced the definition of logarithmic energy growth
for harmonic maps from quasi-projective curves to CAT(0)-spaces. We can now extend this definition
to any smooth quasi-projective variety.

Let 𝑇 := |𝐿 |×(𝑛−1) . Consider the universal complete intersection

ℛ =

{
(𝑥, 𝐻1, · · ·𝐻𝑛−1) ∈ 𝑋 × 𝑇 | 𝑥 ∈ 𝐻1 ∩ · · · ∩ 𝐻𝑛−1

}
⊂ 𝑋 × 𝑇.

Let 𝑇◦ be the Zariski open subset of 𝑇 defined in Proposition 2.11. We set ℛ◦ := (𝑋 × 𝑇◦) ∩ℛ and
let us denote by 𝜋◦ : ℛ◦ → 𝑇◦ the projection map. Then by applying Theorem 2.14 inductively, for
each fiber R of 𝜋◦, the homomorphism 𝜋1(R) → 𝜋1(𝑋) is surjective.
Definition 2.15 (Logarithmic energy growth (I)). — Let 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾) be a Zariski dense
representation where 𝐺 is a semi-simple algebraic group defined over a non-archimedean local field
𝐾 . Assume that 𝑢̃ : 𝑋 → Δ(𝐺) is a 𝜚-equivariant harmonic map. If dimC 𝑋 = 1, we say 𝑢̃ has
logarithmic energy growth if there is a positive constant 𝐶 such that for any 0 < 𝑟 < 1, one has

(2.13)
𝐿2
𝛾

2𝜋
log

1
𝑟
≤ 𝐸𝑢 [D𝑟 ,1] ≤

𝐿2
𝛾

2𝜋
log

1
𝑟
+ 𝐶,

where D is a conformal disk in 𝑋 centered at 𝑝 ∈ Σ. The constant 𝐿𝛾 is the translation length of 𝜚(𝛾)
defined in Definition 2.7, where 𝛾 ∈ 𝜋1(𝑋) is the element corresponding to the loop 𝛾 around 𝑝.

If dimC 𝑋 ⩾ 2, a 𝜚-equivariant harmonic map 𝑢̃ : 𝑋 → Δ(𝐺) has logarithmic energy growth with
respect to (𝑋, 𝐿), if for any fiber R of 𝜋◦ : ℛ

◦ → 𝑇◦, the section 𝑢R : R → R ×𝜚R Δ(𝐺) has
logarithmic energy growth. Here 𝜚R : 𝜋1(R) → Δ(𝐺) and 𝑢R are defined in (2.5).
Remark 2.16. — Note that when dim 𝑋 ⩾ 2, the definition of logarithmic energy growth in Defini-
tion 2.15 depends a priori on the choice of a projective compactification 𝑋 of 𝑋 and a sufficiently
ample line bundle 𝐿 on 𝑋 . In Proposition 3.6, we will prove that for the harmonic map constructed
in Theorem 2.1, it has logarithmic energy growth with respect to any projective compactification 𝑋
and any sufficiently ample line bundle 𝐿. Consequently, we can give a more intrinsic definition of
logarithmic energy growth in Definition 3.8 that surpasses Definition 2.15.
Example 2.17. — To clarify Definition 2.15, we give an example of a harmonic map that does not
have logarithmic energy growth in the sense of Definition 2.15. For a non-archimedean local field
𝐾 , the building of GL1(𝐾) is a real line R. The action of GL1(𝐾) on R is translation by 𝜈(𝑘) where
𝜈 : 𝐾∗ → R is the valuation of 𝐾 . Let 𝑋 = C∗ and 𝜚 : 𝜋1(𝑋) → GL1(𝐾) be the trivial representation,
i.e. 𝜚(𝛾) is the identity map for any 𝛾 ∈ 𝜋1(C∗). Consider the universal cover

𝜋 : C→ C∗

𝑤 ↦→ exp(𝑤).
Define a map

𝑢̃ : C→ R

𝑤 ↦→ 1
2

∫ 𝑤

0
(exp∗(𝑑 log 𝑧 + 𝑑 log 𝑧)) = Re(𝑤).

Then 𝑢̃ is a 𝜚-equivariant pluriharmonic function. It descends to a function 𝑢 : C∗ → R defined by
𝑢(𝑤) := log |𝑤 |.

Endow D∗ with the standard Euclidean metric
√
−1 𝑑𝑧∧𝑑𝑧̄

2 . However, note that the energy is
independent of the choice of metric on the Riemann surface. We can easily compute the energy of 𝑢
in the annulus D𝑟 ,1 := {𝑟 < |𝑧 | < 1} ⊂ C∗:

𝐸𝑢 [D𝑟 ,1] =
∫ log 1

log 𝑟
𝑑𝑡 ·

∫ 2𝜋

0
𝑑𝜃 = 2𝜋 log

1
𝑟
.

Although the energy of 𝑢 grows logarithmically as 𝑟 → 0, the 𝜚-equivariant harmonic function 𝑢̃ does
not have logarithmic energy growth in the sense of Definition 2.15. Indeed, the definition of logarithmic
energy growth depends on the translation length 𝐿𝛾 of 𝜚(𝛾) where 𝛾 ∈ 𝜋1(C∗) corresponds to the
loop around the puncture. Since 𝜚 is the trivial representation, the translation length is 𝐿𝛾 = 0 and
the 𝜚-equivariant harmonic function of logarithmic energy growth is identically equal to a constant.
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2.7. Existence of harmonic maps from Riemann surfaces. — We state the existence and unique-
ness of equivariant harmonic maps from Riemann surfaces of logarithmic energy growth.
Lemma 2.18. — Let 𝑌 = 𝑌\{𝑝1, . . . , 𝑝𝑛} where 𝑌 is a compact Riemann surface and let 𝐺 be
a semisimple linear algebraic group defined over a non-archimedean local field 𝐾 . Assume that
𝜚𝑌 : 𝜋1(𝑌 ) → 𝐺 (𝐾) is a Zariski dense representation. Let C ⊂ Δ(𝐺) be a non-empty closed minimal
𝜚𝑌 (𝜋1(𝑌 ))-invariant convex subset as in Lemma 2.2. Then there exists a unique 𝜚𝑌 -equivariant
harmonic map 𝑢̃ : 𝑌 → C with logarithmic energy growth.
Remark 2.19. — The existence statement in Lemma 2.18 directly follows from [DM23a, Theorem
1.1]. On the other hand, the uniqueness theorem of [DM23a, Theorem 1.2] is proven under the
additional assumption that 𝜚 : 𝜋1(𝑋) → Δ(𝐺) does not fix the point at infinity. Thus, the main focus
of the proof of Lemma 2.18 is to adapt the proof of [DM23a, Theorem 1.2] to the case where C is not
necessarily the entire Δ(𝐺).
Proof of Lemma 2.18. — To prove existence, we use the fact that C is an NPC space and apply
[DM23a, Theorem 1.1] for which the assumptions are:

(A) the action of 𝜚𝑌 (𝜋1(𝑌 )) on C does not fix a point at infinity, and
(B) 𝜚𝑌 (𝜆 𝑗) is semisimple for each 𝑗 ∈ {1, . . . , 𝑛}, where 𝜆 𝑗 ∈ 𝜋1(𝑌 ) is the element associated to the

loop around the puncture 𝑝 𝑗 .

Lemma 2.2 (i) implies assumption (A) and Lemma 2.6 implies assumption (B).
To prove the uniqueness, we use the minimality of C and a slight variation of the proof of [DM23a,

Theorem 1] where the target space is a building. We shall assume on the contrary that 𝑢̃0, 𝑢̃1 : 𝑌 → C
are distinct 𝜚𝑌 -equivariant harmonic maps with logarithmic energy growth. The following three steps
lead to a contradiction to the assumption that 𝜚𝑌 does not fix a point at infinity.
Step 1. We first define an increased sequence of subsets of C
(2.14) 𝐶0 ⊂ · · · ⊂ 𝐶𝑘 ⊂ · · ·
inductively as follows: First, let 𝐶0 = 𝑢̃0(𝑌 ), and then let 𝐶𝑘 be the union of the images of all
geodesic segments connecting points of𝐶𝑘−1. The 𝜚𝑌 (𝜋1(𝑌 ))-invariance of𝐶0 implies the 𝜚𝑌 (𝜋1(𝑌 ))-
invariance of 𝐶𝑘 . The set

⋃∞
𝑘=0𝐶𝑘 is the convex hull of the image of 𝑢̃0, and the minimality of C

implies

C =

∞⋃
𝑘=0

𝐶𝑘 .

Step 2. To each 𝑄 ∈ C, we assign a geodesic segment 𝜎̄𝑄 in C as follows: First, for 𝑄 = 𝑢̃0(𝑞) ∈ 𝐶0,
let

(2.15) 𝜎̄𝑄 : [0, 1] → C, 𝜎̄𝑄 (𝑡) = (1 − 𝑡)𝑢̃0(𝑞) + 𝑡𝑢̃1(𝑞).
In the above, the weighted sum (1 − 𝑡)𝑃 + 𝑡𝑄 is used to denote the points on the geodesic segment
connecting 𝑃 and 𝑄. Note that 𝜎̄𝑄 is well-defined by [DM23c, (3.1), (3.3)]. Since C is a convex
subset of Δ(𝐺), 𝑢̃0 and 𝑢̃1 are harmonic as maps into Δ(𝐺), we can thus apply [DM23c, (3.16)] to
conclude that {𝜎̄𝑄}𝑄∈𝐶0 is a family of pairwise parallel of geodesic segments of uniform length.
(We can assume they are all unit length by normalizing the target space.) Since 𝑢̃0 and 𝑢̃1 are both
𝜚𝑌 -equivariant, the assignment𝑄 ↦→ 𝜎̄𝑄 is 𝜚𝑌 (𝜋1(𝑌 ))-equivariant; i.e. 𝜚𝑌 (𝛾)𝜎̄𝑄 = 𝜎̄ 𝜚𝑌 (𝛾)𝑄 for any
𝑄 ∈ 𝐶0 and 𝛾 ∈ 𝜋1(𝑌 ).

For 𝑛 ∈ N, we inductively define a 𝜚𝑌 (𝜋1(𝑌 ))-equivariant map from 𝐶𝑛 to a family of pairwise
parallel geodesic segments as follows: For any pair of points 𝑄0, 𝑄1 ∈ 𝐶𝑛−1, apply the Sandwich
Lemma of [BH, II.2.12 Exercise] with vertices 𝑄0, 𝑄1, 𝑃0 := 𝜎̄𝑄0 (1), 𝑃1 := 𝜎̄𝑄1 (1) to define a one-
parameter family of parallel geodesic segments 𝜎̄𝑄𝑡 : [0, 1] → C with initial point𝑄𝑡 = (1−𝑡)𝑄0+𝑡𝑄1
and terminal point 𝑃𝑡 = (1 − 𝑡)𝑃0 + 𝑡𝑃1. The inductive hypothesis implies that the map 𝑄 ↦→ 𝜎̄𝑄

defined on 𝐶𝑛 is also 𝜚𝑌 (𝜋1(𝑌 ))-equivariant. Finally, consider 𝑄 ∈ C such that 𝑄𝑖 → 𝑄 where
𝑄𝑖 ∈ ∪∞

𝑘=1𝐶𝑘 . In this case, let 𝜎𝑄𝑖 be the corresponding 𝜌𝑌 (𝜋1(𝑌 ))-invariant geodesic segments and
let 𝜎𝑄 be the limit of 𝜎𝑄𝑖 . The above construction defines a 𝜚𝑌 (𝜋1(𝑌 ))-equivariant map

𝑄 ↦→ 𝜎̄𝑄

from C to a family of pairwise parallel geodesic segments contained in C.
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Step 3. We extend these geodesic segments into a geodesic ray as follows: For 𝑄 ∈ C, we inductively
construct a sequence {𝑄𝑖} of points in C by first setting 𝑄0 = 𝑄 and then defining 𝑄𝑖 = 𝜎̄

𝑄𝑖−1 ( 3
4 ).

Next, let

𝐿𝑄 =

∞⋃
𝑖=0

𝐼𝑄𝑖

where 𝐼𝑄𝑖 = 𝜎̄𝑄𝑖 ( [0, 1]). Therefore, 𝐿𝑄 is a union of pairwise parallel geodesic segments. Thus,
{𝐿𝑄}𝑄∈C is a family of pairwise parallel geodesic rays. Moreover, the 𝜚𝑌 (𝜋1(𝑌 ))-equivariance of
the map 𝑄 ↦→ 𝜎̄𝑄 implies 𝜚(𝛾)𝜎̄𝑄𝑖−1 ( 3

4 ) = 𝜎̄
𝜚 (𝛾)𝑄𝑖−1 ( 3

4 ). Thus, if {𝑄𝑖} is the sequence constructed
starting with 𝑄0 = 𝑄, then {𝜚𝑌 (𝛾)𝑄𝑖} is the sequence constructed starting with 𝜚𝑌 (𝛾)𝑄0 = 𝜚𝑌 (𝛾)𝑄.
We thus conclude

𝜚(𝛾)𝐿𝑄 =

∞⋃
𝑖=0

𝜚(𝛾)𝐼𝑄𝑖 =

∞⋃
𝑖=0

𝐼 𝜚 (𝛾)𝑄𝑖 = 𝐿 𝜚 (𝛾)𝑄 .

We are done by letting the geodesic ray 𝜎𝑄 : [0,∞) → C be the extension of the geodesic segment
𝜎̄𝑄 : [0, 1] → C parameterizing 𝐿𝑄. Consequently, we have constructed a 𝜚𝑌 (𝜋1(𝑌 ))-equivariant
map

𝑄 ↦→ 𝜎̄𝑄

from C to a family of pairwise parallel geodesic rays in C.
The above construction shows that 𝜚𝑌 (𝜋1(𝑌 )) fixes the equivalence class [𝐿𝑄] of geodesic rays.

This implies that the action of 𝜚𝑌 (𝜋1(𝑌 )) on C fixes a point at infinity. It contradicts with Assumption
(A), and we prove the uniqueness assertion. □

2.8. Pluriharmonicity. —
Definition 2.20 (Pluriharmonic maps). — Let 𝑋 be a complex manifold. A locally Lipschitz map
𝑢 : 𝑋 → Δ(𝐺) is pluriharmonic if 𝑢 ◦ 𝜓 : D → Δ(𝐺) is harmonic for any holomorphic map
𝜓 : D→ 𝑋 .

We will prove that in order to establish the pluriharmonicity of a harmonic map 𝑢 to the Euclidean
building, it is sufficient to verify it over the regular set of 𝑢.
Lemma 2.21. — Let 𝑢 : 𝑈 = D𝑛 → Δ(𝐺) be a harmonic map with respect to the standard Euclidean
metric on𝑈 = D𝑛. If 𝜕𝜕𝑢 = 0 on the regular set R(𝑢), then 𝑢 is pluriharmonic.
Remark 2.22. — Note that if 𝑥 ∈ R(𝑢), we can select a neighborhood Ω𝑥 of 𝑥 and an apartment 𝐴
such that 𝑢(Ω𝑥) ⊂ 𝐴. Our assumption implies that, upon identifying 𝐴 ≃ R𝑁 , the map 𝑢 : Ω𝑥 → R𝑁

is smooth and satisfies 𝜕𝜕𝑢 = 0.
Proof. — Since pluriharmonicity is a local property, we are free to shrink𝑈 and localize around any
given point. We first establish the following claim: if D ↩→ 𝑈 is an embedded holomorphic disk, then
the restriction of 𝑢 to D is holomorphic.

After possibly shrinking𝑈, we can choose an admissible coordinate system (𝑈; 𝑧1, 𝑧2, . . . , 𝑧𝑛) such
that D = (𝑧2 = · · · = 𝑧𝑛 = 0). Denote 𝑧∗ = (𝑧2, . . . , 𝑧𝑛) and let

D𝑧∗ := D × {𝑧∗} ≃ D.
Recall that the singular set S(𝑢) of 𝑢 has Hausdorff codimension at least two by Lemma 2.10. It
follows from [Shi68] that, for almost every 𝑧∗ ∈ D𝑛−1, the Hausdorff dimension

(2.16) dimH (𝑆𝑧∗) = 0,

where 𝑆𝑧∗ := S(𝑢) ∩ D𝑧∗ . Let 𝑢𝑧∗ = 𝑢 |D𝑧∗ and 𝑅𝑧∗ = R(𝑢) ∩ D𝑧∗ , where R(𝑢) denotes the set of
regular points of 𝑢.

Let 𝑧∗ be such that (2.16) holds. Let Ω ⊂ 𝑅𝑧∗ be any Lipschitz domain such that 𝑢𝑧∗ (Ω) ⊂ 𝐴

where 𝐴 ≃ R𝑁 is an apartment of Δ(𝐺). Let Π : Δ(𝐺) → 𝐴 be the closest point projection map
into 𝐴. The differential equality 𝜕𝜕𝑢 = 0 is the first variation formula for 𝑢𝑧∗ : D𝑧∗ → 𝐴 ≃ R𝑁 and
thus 𝐸𝑢𝑧∗ [Ω] ≤ 𝐸𝑣 [Ω] for any comparison map 𝑣 : Ω → 𝐴. For a comparison map 𝑣 : Ω → Δ(𝐺)
not mapping into 𝐴, we have 𝐸𝑢𝑧∗ [Ω] ≤ 𝐸Π◦𝑣 [Ω] ≤ 𝐸𝑣 [Ω] since the projection map Π is distance
decreasing. This implies that 𝑢𝑧∗ is a harmonic map when restricted to the regular set 𝑅𝑧∗ .

We now show that 𝑢𝑧∗ is harmonic as a map from D𝑧∗ . Let 𝑣 : D𝑧∗ → Δ(𝐺) be a harmonic map
with the same boundary values as 𝑢𝑧∗ . Since both 𝑢𝑧∗ and 𝑣 are smooth harmonic maps inD𝑧∗\𝑆𝑧∗ , the
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function 𝑑2(𝑢𝑧∗ , 𝑣) is subharmonic in D𝑧∗\𝑆𝑧∗ (cf. [KS93, Remark 2.4.3]). By (2.16), for any 𝑗 ∈ N,
there exists a open cover {𝐵𝑟𝑘 (𝑝𝑘)}𝑁𝑘=1 of 𝑆𝑧∗ such that

∑𝑁
𝑘=1 𝑟𝑘 <

1
𝑗
. For each 𝑘 = 1, . . . , 𝑁 , let 𝜑𝑘

be a smooth function on D𝑧∗ satisfying the following properties: 0 ≤ 𝜑𝑘 ≤ 1, 𝜑𝑘 is identically equal
to 0 in 𝐵𝑟𝑘 (𝑧𝑘), 𝜑𝑘 is identically equal to 1 outside 𝐵2𝑟𝑘 (𝑧𝑘) and |∇𝜑𝑘 | ≤ 2

𝑟𝑘
. Let 𝜙 𝑗 = Π𝑁

𝑘=1𝜑𝑘 . For
any smooth function 𝜂 ⩾ 0 with compact support in D𝑧∗ , we have

0 ≤
∫
D𝑧∗

(𝜂𝜙 𝑗)△𝑑2(𝑢𝑧∗ , 𝑣)
𝑖𝑑𝑧1 ∧ 𝑑𝑧1

2

= −
∫
D𝑧∗

𝜙 𝑗∇𝜂 · ∇𝑑2(𝑢𝑧∗ , 𝑣)
𝑖𝑑𝑧1 ∧ 𝑑𝑧1

2
−

∫
D𝑧∗

𝜂∇𝜙 𝑗 · ∇𝑑2(𝑢𝑧∗ , 𝑣)
𝑖𝑑𝑧1 ∧ 𝑑𝑧1

2
.(2.17)

Because the Lipschitz constants of 𝑢𝑧∗ and 𝑣 are bounded in the support of 𝜂,

|∇𝜙 𝑗 | ≤
𝑁∑︁
𝑘=1

|∇𝜑𝑘 | ≤
𝑁∑︁
𝑘=1

2
𝑟𝑘

and the support of 𝜑𝑘 is contained in a disk of area 𝜋(2𝑟𝑘)2 , there exists a constant 𝐶 > 0 that can be
chosen independently of 𝑗 such that����∫

D𝑧∗
𝜂∇𝜙 𝑗 · ∇𝑑2(𝑢𝑧∗ , 𝑣)

𝑖𝑑𝑧1 ∧ 𝑑𝑧1

2

���� ≤
𝑁∑︁
𝑘=1

∫
D𝑧∗

|∇𝜑𝑘 | |∇𝑑2(𝑢𝑧∗ , 𝑣) |
𝑖𝑑𝑧1 ∧ 𝑑𝑧1

2

≤
𝑁∑︁
𝑘=1

sup
𝑧∈supp(𝜂)

|∇𝑑2(𝑢𝑧∗ (𝑧), 𝑣(𝑧)) | ·
2
𝑟𝑘

· 𝜋(2𝑟2
𝑘) <

𝐶𝜋

𝑗
.

Thus, letting 𝑗 → ∞ in (2.17), we obtain

0 ≤ −
∫
D𝑧∗

∇𝜂 · ∇𝑑2(𝑢𝑧∗ , 𝑣)
𝑖𝑑𝑧1 ∧ 𝑑𝑧1

2
.

In other words, 𝑑2(𝑢𝑧∗ , 𝑣) is (weakly) subharmonic inD𝑧∗ . Since 𝑑2(𝑢𝑧∗ , 𝑣) = 0 on 𝜕D𝑧∗ , the maximum
principle implies 𝑑2(𝑢𝑧∗ , 𝑣) = 0 in D𝑧∗ . Thus, 𝑢𝑧∗ = 𝑣 and hence 𝑢𝑧∗ is harmonic for a.e. 𝑧∗ ∈ D𝑛−1.
Since the uniform limit of harmonic maps is harmonic, 𝑢𝑧∗ is harmonic for all 𝑧∗ ∈ D. This completes
the proof of the assertion.

Now let 𝜓 : D → 𝑈 be a holomorphic map and 𝐶 be the set of critical points of 𝜓. There is a
neighborhood𝑉 of any 𝑧 ∈ D\𝐶 such that 𝜓 |𝑉 is an embedding. The composition 𝑢 ◦𝜓 |𝑉 is harmonic
by the above assertion. Thus, 𝑢 ◦ 𝜓 is harmonic in D\𝐶. Letting 𝑣 : D → Δ(𝐺) be a harmonic
map with the same boundary values as 𝑢, we can use the same argument above to prove 𝑑2(𝑢, 𝑣) = 0.
Hence 𝑢 is harmonic, and the lemma is proved. □

2.9. Existence of pluriharmonic map from quasi-projective surfaces. —
Theorem 2.23. — Let (𝑋, Σ) be a log smooth pair with dim 𝑋 = 2. Let 𝐿 be a sufficiently ample
line bundle on 𝑋 . Let 𝐺 be a semi-simple algebraic group over a non-archimedean local field 𝐾 .
Assume that 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾) is a Zariski-dense representation, and that C ⊂ Δ(𝐺) is a non-empty
minimal convex 𝜚(𝜋1(𝑋))-invariant closed subset (cf. Lemma 2.2).

Fix a Kähler metric 𝑔 on 𝑋 of Poincaré type as described in Section 1.3. Then there exists a 𝜚-
equivariant harmonic map 𝑢̃ : 𝑋 → C, where 𝜚 is considered as a representation 𝜋1(𝑋) → Isom(C)
as defined in (2.1), such that the following holds:
(1) The map 𝑢̃ is pluriharmonic.
(2) The map 𝑢̃ has logarithmic energy growth with respect to (𝑋, 𝐿).
(3) Properties in Items (1) and (2) uniquely characterize this map 𝑢̃.
Proof. — If 𝜚(𝜋1(𝑋)) is bounded, then 𝜚(𝜋1(𝑋)) fixes a point 𝑃 ∈ Δ(𝐺), allowing us to define
𝑢̃(𝑥) = 𝑃 for any 𝑥 ∈ 𝑋 . Therefore, we assume that 𝜚(𝜋1(𝑋)) is unbounded. In this case, C must also
be unbounded. Otherwise, by the Bruhat-Tits fixed point theorem, C would have a barycenter that is
fixed by 𝜚(𝜋1(𝑋)), contradicting our assumption that 𝜚(𝜋1(𝑋)) is unbounded.

The existence of a 𝜚-equivariant harmonic map

(2.18) 𝑢̃ : 𝑋 → C ⊂ Δ(𝐺)
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follows from [DM24a]. Indeed, the closed unbounded convex subset C ⊂ Δ(𝐺) is an NPC space.
Then [DM24a, Theorem 1] asserts that there exists a 𝜚-equivariant harmonic map 𝑢̃ : 𝑋 → C. Let 𝑢
be its corresponding section (cf. Section 2.2).

Proof of (i). The harmonic map 𝑢̃ is in fact a pluriharmonic map. We defer the details of this proof to
Theorem C in Appendix A. □

Proof of (ii). As dimC 𝑋 = 2, it suffices to check that for any 𝑠 ∈ U with U defined in (2.11),
𝑢𝑠 := 𝑢 |𝑌𝑠 has logarithmic energy growth, where 𝑌𝑠 := 𝑠−1(0) and 𝑌𝑠 := 𝑌𝑠 ∩ 𝑋 . Let 𝑝 ∈ Σ ∩𝑌𝑠. Since
𝑌𝑠 + Σ is a normal crossing divisor, 𝑝 is a smooth point of Σ. By [DM24a, Theorem 6.6], there exists
an admissible coordinate neighborhood (𝑈; 𝑧1, 𝑧2) centered at 𝑝, and a positive constant 𝐶 such that
𝑈 ∩ Σ = (𝑧1 = 0) and

(2.19)
∫
D∗×D

(���� 𝜕𝑢𝜕𝑧1
(𝑧1, 𝑧2)

����2 − 𝐿2
𝛾

2𝜋
1

|𝑧1 |2

)
𝑖𝑑𝑧1 ∧ 𝑑𝑧1

2
∧ 𝑖𝑑𝑧2 ∧ 𝑑𝑧2

2
≤ 𝐶,

where 𝐿𝛾 is the translation length of 𝜚(𝛾) with 𝛾 ∈ 𝜋1(𝑋) corresponding to the loop 𝜃 ↦→ (𝑟𝑒𝑖 𝜃 , 0).
Claim 2.24. — There is a positive constant 𝐶0 such that

(2.20)
���� 𝜕𝑢𝜕𝑧2

(𝑧1, 𝑧2)
���� ≤ 𝐶0, ∀(𝑧1, 𝑧2) ∈ D∗

1
2
× D 1

2
.

Proof. — By Definition 2.7, we have

𝐿2
𝛾

2𝜋
1
𝑟
≤ 1

2𝜋𝑟

(∫ 2𝜋

0

����𝜕𝑢𝜕𝜃 (𝑟𝑒𝑖 𝜃 , 𝑧2)
���� 𝑑𝜃𝑟 )2

≤ 𝑟

2𝜋

(∫ 2𝜋

0

���� 𝜕𝑢𝜕𝑧1
(𝑟𝑒𝑖 𝜃 , 𝑧2)

���� 𝑑𝜃)2

≤
∫ 2𝜋

0

���� 𝜕𝑢𝜕𝑧1
(𝑟𝑒𝑖 𝜃 , 𝑧2)

����2 𝑟𝑑𝜃(2.21)

for any 𝑧2 ∈ D and 𝑟 ∈ (0, 1). Here the last inequality follows from the Cauchy-Schwarz inequality.
Thus, (2.19) and (2.21) imply that

(2.22) 0 ≤
∫
D𝑟1 ,𝑟2

���� 𝜕𝑢𝜕𝑧1
(𝑧1, 𝑧2)

����2 𝑖𝑑𝑧1 ∧ 𝑑𝑧1

2
−
𝐿2
𝛾

2𝜋
log

𝑟2

𝑟1
≤ 𝐶 (𝑧2), for a.e. 𝑧2 ∈ D 1

2

where 𝐶 (𝑧2) is a non-negative integrable function defined on D 1
2
.

We will next show that, we can replace 𝐶 (𝑧2) in (2.22) by a positive constant 𝐶0 that depends only
on 𝜚(𝛾) and the Lipschitz constant of 𝑢 |𝜕D×D. Indeed, [DM23a, Theorem 3.1] and (2.22) imply that
for each 𝑧2, the map 𝑧1 ↦→ 𝑢𝑧2 := 𝑢(𝑧1, 𝑧2) is the unique Dirichlet solution for the boundary value
𝑢𝑧2

��
𝜕D 1

2

and that the constant 𝐶0 depends only on the translation length 𝐿𝛾 and the Lipschitz constant

of 𝑢𝑧2

��
𝜕D 1

2

. Here we are using the fact that the isometries of Δ(𝐺) are always semisimple when 𝐺

is semisimple by Lemma 2.6. Since 𝑢 is locally Lipschitz, the Lipschitz constant of 𝑢𝑧2

��
𝜕D 1

2

has a

uniform bound for all 𝑧2 ∈ D 1
2
. Hence, the choice of 𝐶0 can be made independently of 𝑧2. The lower

semicontinuity of energy then implies that (2.22) with 𝐶0 instead of 𝐶 (𝑧2) holds for all 𝑧2 ∈ D 1
2

(not
just a.e. 𝑧2); i.e.

(2.23) 0 ≤
∫
D𝑟1 ,𝑟2

���� 𝜕𝑢𝜕𝑧1
(𝑧1, 𝑧2)

����2 𝑖𝑑𝑧1 ∧ 𝑑𝑧1

2
−
𝐿2
𝛾

2𝜋
log

𝑟2

𝑟1
≤ 𝐶0, ∀𝑧2 ∈ D 1

2
.

Since for each 𝑧2 ∈ D, 𝑢𝑧2 is a harmonic section of logarithmic energy growth, the proof of [DM24a,
Lemma 4.1] implies (2.20). For the sake of completeness, we summarize this argument here. Let
𝑧2, 𝑧

′
2 ∈ D 1

2
and

𝛿𝑧2,𝑧
′
2
(𝑧1) = 𝑑 (𝑢̃(𝑧1, 𝑧2), 𝑢̃(𝑧1, 𝑧

′
2)).
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Since 𝑢𝑧2 is harmonic for each 𝑧2, 𝛿2
𝑧2,𝑧

′
2
is a continuous subharmonic function defined inD∗ (cf. [KS93,

Remark 2.4.3]). Since 𝑢𝑧2 and 𝑢𝑧′2 have logarithmic energy growth, by [DM23a, Remark 3.12], one
has

lim
|𝑧1 |→0

𝛿2
𝑧2,𝑧

′
2
(𝑧1) + 𝜀 log |𝑧1 | = −∞.

Thus, 𝛿2
𝑧2,𝑧

′
2

extends to subharmonic function on D 1
2

(cf. [DM23a, Lemma 3.2]). We can apply the
maximum principle to conclude that

(2.24) 𝛿2
𝑧2,𝑧

′
2
(𝑧1) ≤ sup

𝜁 ∈𝜕D
𝛿2
𝑧2,𝑧

′
2
(𝜁) ≤ Λ2 |𝑧2 − 𝑧′2 |

2, ∀𝑧1 ∈ D∗
1
2

where the constant Λ can be chosen independently of 𝑧2, 𝑧
′
2 ∈ D 1

2
since 𝑢̃ is locally Lipschitz

continuous. This implies (2.20). □

Consider a local trivialization of 𝐿 |𝑈 ≃ 𝑈 × C, and let 𝑠𝑈 ∈ 𝒪(𝑈) denote the image of the section
𝑠 under this trivialization. Define

Φ : D × D→ Φ(D × D), Φ(𝑧1, 𝑧2) = (𝑤1, 𝑤2),
{
𝑤1 = 𝑧1
𝑤2 = 𝑠𝑈 (𝑧1, 𝑧2)

.

The fact that 𝑌𝑠 ∩ 𝑈 = 𝑠−1
𝑈

(0) intersects with (𝑧1 = 0) transversely implies that 𝜕𝑠𝑈
𝜕𝑧2

(𝑧1, 𝑧2) ≠ 0
for (𝑧1, 𝑧2) sufficiently close to (0, 0). Thus, after shrinking 𝑈, we can assume that Φ defines a
holomorphic change of coordinates in𝑈. Define a holomorphic function 𝜂(𝑤1, 𝑤2) by

Φ−1(𝑤1, 𝑤2) = (𝑧1, 𝑧2),
{
𝑧1 = 𝑤1
𝑧2 = 𝜂(𝑤1, 𝑤2)

.

Note that 𝑤1 ↦→ (𝑤1, 𝜂(𝑤1, 𝑤2)) defines 𝑤1 as holomorphic coordinate of the Riemann surface
𝑠−1(𝑤2).

Denote

𝑢𝑤2 (𝑤1) := 𝑢(𝑤1, 𝜂(𝑤1, 𝑤2)).

Whenever 𝑢(𝑤1, 𝜂(𝑤1, 𝑤2)) is a regular point (cf. Definition 2.9 and Lemma 2.10), we apply the chain
rule to obtain

𝑑𝑢𝑤2

𝑑𝑤1
(𝑤1) =

𝜕𝑢

𝜕𝑧1
(𝑤1, 𝜂(𝑤1, 𝑤2)) +

𝜕𝑢

𝜕𝑧2
(𝑤1, 𝜂(𝑤1, 𝑤2))

𝜕𝜂

𝜕𝑤1
(𝑤1, 𝑤2).

Since
��� 𝜕𝜂𝜕𝑤1

(𝑤1, 𝑤2)
��� is bounded, the estimate (2.20) implies that there exists a constant 𝐶 > 0 such

that ����𝑑𝑢𝑤2

𝑑𝑤1
(𝑤1)

����2 ≤
���� 𝜕𝑢𝜕𝑧1

(𝑤1, 𝜂(𝑤1, 𝑤2))
����2 + 𝐶 ���� 𝜕𝑢𝜕𝑧2

(𝑤1, 𝜂(𝑤1, 𝑤2))
���� + 𝐶.(2.25)

Since the regular set R(𝑢) of 𝑢 is an open set is of full measure, Φ(R(𝑢)) is also an open set of full
measure. Furthermore, since 𝑢 locally Lipschitz continuous, the right hand side of (2.25) is a bounded
function. Thus, we can subtract 𝐿2

𝛾

2𝜋
1

|𝑤1 |2
from both sides of (2.25) and integrate over D∗

𝜀 × D𝜀 for
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some small 𝜀 > 0 such that Φ−1(D𝜀 × D𝜀) ⊂ D 1
2
× D 1

2
to obtain∫

D∗𝜀×D𝜀

(����𝑑𝑢𝑤2

𝑑𝑤1
(𝑤1)

����2 − 𝐿2
𝛾

2𝜋
1

|𝑤1 |2

)
𝑖𝑑𝑤1 ∧ 𝑑𝑤̄1

2
∧ 𝑖𝑑𝑤2 ∧ 𝑑𝑤̄2

2

≤
∫

D∗𝜀×D𝜀

(���� 𝜕𝑢𝜕𝑧1
(𝑤1, 𝜂(𝑤1, 𝑤2))

����2 − 𝐿2
𝛾

2𝜋
1

|𝑤1 |2

)
𝑖𝑑𝑤1 ∧ 𝑑𝑤̄1

2
∧ 𝑖𝑑𝑤2 ∧ 𝑑𝑤̄2

2

+𝐶
∫

D∗𝜀×D𝜀

���� 𝜕𝑢𝜕𝑧2
(𝑤1, 𝜂(𝑤1, 𝑤2))

���� 𝑖𝑑𝑤1 ∧ 𝑑𝑤̄1

2
∧ 𝑖𝑑𝑤2 ∧ 𝑑𝑤̄2

2
+ 𝐶

=

∫
Φ−1 (D∗𝜀×D𝜀 )

(���� 𝜕𝑢𝜕𝑧1
(𝑧1, 𝑧2)

����2 − 𝐿2
𝛾

2𝜋
1

|𝑧1 |2

) ����𝜕𝑠𝑈𝜕𝑧2

����2 𝑖𝑑𝑧1 ∧ 𝑑𝑧1

2
∧ 𝑖𝑑𝑧2 ∧ 𝑑𝑧2

2

+𝐶
∫

Φ−1 (D∗𝜀×D𝜀 )

���� 𝜕𝑢𝜕𝑧2
(𝑧1, 𝑧2)

���� ����𝜕𝑠𝑈𝜕𝑧2

����2 𝑖𝑑𝑧1 ∧ 𝑑𝑧1

2
∧ 𝑖𝑑𝑧2 ∧ 𝑑𝑧2

2
+ 𝐶.

Since
���𝜕𝑠𝑈𝜕𝑧2

���2 is bounded, (2.19) implies that the first integral on the right hand side of the above
inequality is finite. By (2.20), the second integral on the right hand side is also finite. Thus, we
conclude that for a.e. 𝑤2 ∈ D𝜀 ,∫

D∗𝜀

(����𝑑𝑢𝑤2

𝑑𝑤1
(𝑤1)

����2 − 𝐿2
𝛾

2𝜋
1

|𝑤1 |2

)
𝑖𝑑𝑤1 ∧ 𝑑𝑤̄1

2
≤ 𝐶 (𝑤2).

We can now proceed as before (cf. from (2.22) to (2.23)) to show that 𝐶 (𝑤2) can be replaced by a
constant 𝐶 independent of 𝑤; i.e. there exists a positive constant 𝐶 such that for every 𝑤2 ∈ D𝜀 and
0 < 𝑟1 < 𝑟2 < 𝜀, we have

(2.26) 0 ≤
∫
D𝑟1 ,𝑟2

����𝜕𝑢𝑤2

𝜕𝑤1

����2 𝑖𝑑𝑤1 ∧ 𝑑𝑤̄1

2
−
𝐿2
𝛾

2𝜋
log

𝑟2

𝑟1
≤ 𝐶.

Note that the lower bound of 0 follows from (2.21). Applying (2.26) with 𝑤2 = 0, we conclude that
𝑢0 = 𝑢𝑠 has logarithmic energy growth in the sense of Definition 2.15. □

Proof of (iii). To prove the uniqueness assertion, let 𝑣 : 𝑋 → C be another 𝜚-equivariant
pluriharmonic map into C of logarithmic energy growth with respect to (𝑋, 𝐿). For any 𝑞 ∈ 𝑋 , there
exists a section 𝑠 ∈ U(𝑞) with U(𝑞) defined in (2.12). We define 𝜚𝑌𝑠 := 𝜚 |𝜋1 (𝑌𝑠 ) . By the definition of
U(𝑞) and Theorem 2.14, 𝜚𝑌𝑠 (𝜋1(𝑌𝑠)) = 𝜚(𝜋1(𝑋)) and thus 𝜚𝑌𝑠 does not fix a point at infinity of C.
Consider the sections of the fiber bundle 𝑋 ×𝜚 C → 𝑋 defined by the pluriharmonic maps 𝑢 and 𝑣,
and denote their restrictions to 𝑌𝑠 by 𝑢𝑌𝑠 : 𝑌𝑠 → 𝑌𝑠 ×𝜚𝑌𝑠

C and 𝑣𝑌𝑠 : 𝑌𝑠 → 𝑌𝑠 ×𝜚𝑌𝑠
C. Since 𝑌𝑠 is a

Riemann surface, the pluriharmonicity of 𝑢 and 𝑣 implies that 𝑢𝑌𝑠 and 𝑣𝑌𝑠 are harmonic sections, and
have logarithmic energy growth by Definition 2.15. By the uniqueness assertion of Lemma 2.18, we
conclude 𝑢𝑌𝑠 = 𝑣𝑌𝑠 . Since 𝑞 is an arbitrary point in 𝑋 , we conclude 𝑢 = 𝑣. □
The proof of the theorem is accomplished. □

2.10. Proof of Theorem 2.1. —
Proof of Theorem 2.1. — The proof is organized into five steps. In the first step, we construct a map
𝑢̃ : 𝑋 → Δ(𝐺) through an inductive process. Moving onto the second step, we establish that such 𝑢̃ is
locally harmonic with respect to the Euclidean metric. In the third step we prove the pluriharmonicity
of 𝑢̃. Subsequently, in the fourth step, we establish that 𝑢̃ is harmonic with respect to any Kähler
metric on 𝑋 . Finally, in the last step, we show the uniqueness of 𝑢̃.

Step 1: We prove the existence of 𝑢. Consider the following assertion:
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(∗) Let C be a non-empty minimal closed convex 𝜚(𝜋1(𝑋))-invariant subset of Δ(𝐺) introduced in
Lemma 2.2. Let 𝐿 be a sufficiently ample line bundle on 𝑋 . Then there exists a 𝜚-equivariant
pluriharmonic map 𝑢̃ : 𝑋 → C ⊂ Δ(𝐺) of logarithmic energy growth with respect to (𝑋, 𝐿).
Moreover, such map 𝑢 is the unique 𝜚-equivariant pluriharmonic map into C of logarithmic
energy growth with respect to (𝑋, 𝐿).

Initial Step. The statement (∗) is true for dimC 𝑋 = 2 by Theorem 2.23.

Inductive Step. We assume (∗) whenever dimC 𝑋 = 2, . . . , 𝑛 − 1. Now let dimC 𝑋 = 𝑛 ⩾ 3. For each
section 𝑠 ∈ U with U as in (2.11), 𝜚𝑌𝑠 (𝜋1(𝑌𝑠)) = 𝜚(𝜋1(𝑋)) by Theorem 2.14. Thus, the inductive
hypothesis implies that there exists a 𝜚𝑌𝑠 -equivariant pluriharmonic map of logarithmic energy growth

𝑢̃𝑠 : 𝑌𝑠 → C.
Denote the associated section by 𝑢𝑠 : 𝑌𝑠 → 𝑌𝑠 ×𝜚𝑌𝑠

C which can be viewed as a map

𝑢𝑠 : 𝑌𝑠 → 𝑋 ×𝜚 C
by (2.6).
Claim 2.25. — For 𝑞 ∈ 𝑋 and 𝑠1, 𝑠2 ∈ U(𝑞) with U(𝑞) defined in (2.12), we have 𝑢𝑠1 (𝑞) = 𝑢𝑠2 (𝑞).
Proof. — For 𝑖 = 1, 2 and 𝑞 ∈ 𝑋 , we define U(𝑠𝑖 , 𝑞) as follows:

U(𝑠𝑖 , 𝑞) = {𝑠 ∈ U(𝑞) | 𝑌𝑠 transversal to 𝑌𝑠𝑖 and Σ ∪ 𝑌𝑠 ∪ 𝑌𝑠𝑖 is normal crossing}.
By Lemma 2.12, U(𝑠𝑖 , 𝑞) is a non-empty Zariski open subset of U(𝑞). This implies U(𝑠1, 𝑞) ∩
U(𝑠2, 𝑞) ≠ ∅.

Fix 𝑠 ∈ U(𝑠1, 𝑞) ∩ U(𝑠2, 𝑞). Let 𝜄 : 𝑌𝑠𝑖 ∩ 𝑌𝑠 → 𝑋 be the inclusion map. By Theorem 2.14, we
know that 𝜋1(𝑌𝑠𝑖 ∩ 𝑌𝑠) → 𝜋1(𝑋), 𝜋1(𝑌𝑠) → 𝜋1(𝑋) and 𝜋1(𝑌𝑠𝑖 ) → 𝜋1(𝑋) are all surjective. By the
inductive hypothesis, there exist pluriharmonic sections

𝑢𝑠 : 𝑌𝑠 → 𝑌𝑠 ×𝜚𝑌𝑠
C and 𝑢𝑠𝑖 : 𝑌𝑠𝑖 → 𝑌𝑠𝑖 ×𝜚𝑌𝑠𝑖

C.

which are of logarithmic energy growth with respect to (𝑌𝑠, 𝐿 |𝑌𝑠 ) and (𝑌𝑠𝑖 , 𝐿 |𝑌𝑠𝑖 ) respectively. By the
uniqueness assertion of the inductive hypothesis, the restriction maps

𝑢𝑠 |𝑌𝑠𝑖∩𝑌𝑠 : 𝑌𝑠𝑖 ∩ 𝑌𝑠 → �𝑌𝑠𝑖 ∩ 𝑌𝑠 ×𝜚𝑌𝑠𝑖 ∩𝑌𝑠
C

and
𝑢𝑠𝑖 |𝑌𝑠𝑖∩𝑌𝑠 : 𝑌𝑠𝑖 ∩ 𝑌𝑠 → �𝑌𝑠𝑖 ∩ 𝑌𝑠 ×𝜚𝑌𝑠𝑖 ∩𝑌𝑠

C.
defined in (2.5) are in fact the same section. Since 𝑞 ∈ 𝑌𝑠𝑖 ∩ 𝑌𝑠, we conclude 𝑢𝑠𝑖 (𝑞) = 𝑢𝑠 (𝑞). □

Therefore, by Claim 2.25, we can define

𝑢 : 𝑋 → 𝑋 ×𝜚 C, 𝑢(𝑞) := 𝑢𝑠 (𝑞) for 𝑠 ∈ U(𝑞).
To complete the inductive step, we are left to show that 𝑢 is a pluriharmonic section of logarithmic
energy growth with respect to (𝑋, 𝐿), and moreover is unique amongst such pluriharmonic sections
of 𝑋 ×𝜚 C → 𝑋 .

Step 2: We prove that 𝑢 is locally harmonic with respect to the Euclidean metric. Let 𝑇 := |𝐿 |×(𝑛−1)

and let 𝑇◦ be the Zariski open subset of 𝑇 defined in Proposition 2.11. We first apply Proposition 2.11
to prove the following:
Claim 2.26. — For every 𝑥0 ∈ 𝑋 , there exists a coordinate system (𝑈; 𝑧1, . . . , 𝑧𝑛) centered at 𝑥0 such
that for every 𝑖 = 1, . . . , 𝑛 and every fixed 𝑤 := (𝑧1, . . . , 𝑧𝑖−1, 𝑧𝑖+1, . . . , 𝑧𝑛) ∈ D𝑛−1, the disk

D𝑤 := {(𝑧1, . . . , 𝑧𝑖−1, 𝑧, 𝑧𝑖+1, . . . , 𝑧𝑛) : |𝑧 | < 1}
is contained in some complete intersection𝐻1∩· · ·∩𝐻𝑖−1∩𝐻𝑖+1∩· · ·∩𝐻𝑛, where (𝐻1, . . . , 𝐻𝑖−1, 𝐻𝑖+1, . . . , 𝐻𝑛) ∈
𝑇◦.
Proof. — To prove Claim 2.26, we fix 𝑠0 ∈ 𝐻0(𝑋, 𝐿) such that 𝑥0 ∉ (𝑠0 = 0). By Proposition 2.11.(ii),
we can find 𝑠1, . . . , 𝑠𝑛 ∈ 𝐻0(𝑋, 𝐿) such that

(a) the hypersurfaces 𝑌𝑠1 , . . . , 𝑌𝑠𝑛 are smooth and intersect transversely, where 𝑌𝑠𝑖 := 𝑠−1
𝑖
(0).
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(b)
∑𝑛

𝑖=1𝑌𝑠𝑖 + Σ is normal crossing.
(c) 𝑥0 ∈ 𝑌𝑠1 ∩ . . . ∩ 𝑌𝑠𝑛 .

Define 𝑢𝑖 := 𝑠𝑖
𝑠0

which is a global rational function of 𝑋 and regular on some neighborhood 𝑈 of 𝑥0.
After shrinking𝑈 properly, the map

𝜑 : 𝑈 → C𝑛

𝑥 ↦→ (𝑢1(𝑥), 𝑢2(𝑥), . . . , 𝑢𝑛 (𝑥))
is biholomorphic to its image 𝜑(𝑈) = D𝑛

𝜀 . In particular, this defines an admissible coordinate system
(𝑈; 𝑧1, . . . , 𝑧𝑛; 𝜑) centered at 𝑥0. Fix any 𝑖 ∈ {1, . . . , 𝑛}. For any 𝜁 = (𝜁1, . . . , 𝜁𝑖−1, 𝜁𝑖+1, . . . , 𝜁𝑛) ∈
D𝑛−1

𝜖 , the disk
D𝜁 :=

{
(𝜁1, . . . , 𝜁𝑖−1, 𝑧, 𝜁𝑖+1, . . . , 𝜁𝑛) ∈ D𝑛

𝜖 | |𝑧 | < 𝜖
}

is contained in

𝑈 ∩ (𝑧1 − 𝜁1 = 0) ∩ · · · ∩ (𝑧𝑖−1 − 𝜁𝑖−1 = 0) ∩ (𝑧𝑖+1 − 𝜁𝑖+1 = 0) ∩ · · · ∩ (𝑧𝑛 − 𝜁𝑛 = 0).
After possibly shrinking 𝜀, for any 𝜁 ∈ 𝑈, the divisor 𝐸 𝑗 (𝜁) := 𝑈 ∩ (𝑧 𝑗 − 𝜁 𝑗 = 0) in𝑈 coincides with
(𝑠 𝑗 − 𝜁 𝑗 𝑠0 = 0) ∩𝑈 for each 𝑗 ∈ {1, . . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝑛}, and we have(

𝑌𝑠1−𝜁1𝑠0 , · · · , 𝑌𝑠𝑖−1−𝜁𝑖−1𝑠0 , 𝑌𝑠𝑖+1−𝜁𝑖+1𝑠0 , · · · , 𝑌𝑠𝑛−𝜁𝑛𝑠0

)
∈ 𝑇◦.

By Item (b), we can shrink 𝜀 > 0 further such that the divisor
∑

𝑗≠𝑖 𝐸 𝑗 (𝜁) + Σ ∩𝑈 remains a normal
crossing divisor for any 𝜁 ∈ D𝑛−1

𝜀 . Claim 2.26 follows after composing 𝜑 with the rescaling:
D𝑛

𝜀 → D𝑛

(𝑧1, . . . , 𝑧𝑛) ↦→
( 𝑧1

𝜀
, . . . ,

𝑧𝑛

𝜀

)
.

Thus, for any 𝑤 = (𝑧1, . . . , 𝑧𝑖−1, 𝑧𝑖+1, . . . , 𝑧𝑛) ∈ D𝑛−1, the disk D𝑤 is contained in the curve

R𝑤 = 𝑌𝑠1−𝑧1𝑠0 ∩ · · · ∩ 𝑌𝑠𝑖−1−𝑧𝑖−1𝑠0 ∩ 𝑌𝑠𝑖+1−𝑧𝑖+1𝑠0 ∩ · · · ∩ 𝑌𝑠𝑛−𝑧𝑛𝑠0 .

The claim is thus proved. □

According to Proposition 2.11 and Claim 2.26, for any 𝑤 = (𝑧1, . . . , 𝑧𝑖−1, 𝑧𝑖+1, . . . , 𝑧𝑛) ∈ D𝑛−1, we
can define a holomorphic map

𝜈 : D𝑛−1 → 𝑇◦

𝑤 ↦→
(
𝑌𝑠1−𝜁1𝑠0 , · · · , 𝑌𝑠𝑖−1−𝜁𝑖−1𝑠0 , 𝑌𝑠𝑖+1−𝜁𝑖+1𝑠0 , · · · , 𝑌𝑠𝑛−𝜁𝑛𝑠0

)
.

Let 𝜋 : ℛ → 𝑇 be the universal family of complete intersection curves in 𝑋 as defined in Propo-
sition 2.11. Consider the base change ℛ

′ := ℛ ×𝑇 D
𝑛−1 → D𝑛−1 of ℛ over D𝑛−1 via 𝜈. By

Proposition 2.11, the family ℛ
′ → D𝑛−1 is topologically trivial, with R𝑤 denoting the fiber over each

𝑤 ∈ D𝑛−1.
We now proceed with the proof that 𝑢 is harmonic with respect to the Euclidean metric on D𝑛.

The first step is to show that, after shrinking 𝑈 if necessary, 𝑢 is Lipschitz continuous in 𝑈. Fix
𝑤 := (𝑧1, . . . , 𝑧𝑖−1, 𝑧𝑖+1, . . . , 𝑧𝑛) ∈ D𝑛−1. The restriction of 𝑢 to R𝑤 , denoted as 𝑢𝑤 , is the unique
harmonic section

𝑢𝑤 : R𝑤 → R̃𝑤 ×𝜚R𝑤 C
where 𝜚R𝑤

:= 𝜚 ◦ (𝜄R𝑤
)∗ with 𝜄R𝑤

: R𝑤 ↩→ 𝑋 the inclusion map. We endow R𝑤 with a conformal
hyperbolic metric ℎ𝑤 . In particular, ℎ0 := ℎ (0,...,0) is the conformal hyperbolic metric on R0 :=
R (0,...,0) .

To estimate the local Lipschitz constant of 𝑢𝑤 , we recall its construction in [DM23a]. The first step
is to construct a locally Lipschitz 𝜚R𝑤

-equivariant map 𝑘 : R̃𝑤 → C using [KS93, Proposition 2.6.1].
Let 𝛾1, . . . , 𝛾𝑝 be the generators of 𝜋1(R𝑤) and let

𝛿(𝑃) = max
𝑖=1,..., 𝑝

𝑑 (𝜚R𝑤
𝑃, 𝑃).

Fix 𝑃′ ∈ Δ(𝐺) and let 𝛿′ = 𝛿(𝑃′). The Lipschitz constant 𝐿 (𝑥) of 𝑘 at 𝑥 is bounded by

𝐿 (𝑥) ≤ 𝐶𝛿′
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where 𝐶 depends on the metric ℎ𝑤 . As remarked in the last paragraph of the proof of [KS93,
Proposition 2.6.1], 𝐶 can be chosen independently of ℎ𝑤 since ℎ𝑤 has sectional curvature bounded
from below.

In [DM23a], we construct a prototype map, i.e., a 𝜚R𝑤
-equivariant map 𝑣 : R̃𝑤 → Δ(𝐺) that

is equal to 𝑘 away from disks containing the punctures and equal to the Dirichlet solution on the
punctured disks with boundary value given by 𝑘 . In this way, we construct a locally Lipschitz map 𝑣
with controlled energy towards the puncture. The energy of 𝑢 away from the punctures is bounded by
the energy of 𝑣 away from the punctures. Therefore, the local Lipschitz constant of 𝑢𝑤 depends on the
local Lipschitz constant of 𝑣 which in turn depends on the local Lipschitz constant of 𝑘 . In summary,
the local Lipschitz constant of 𝑢𝑤 depends only on 𝛿′.

According to Proposition 2.11, ℛ′ → D𝑛−1 is a topologically trivial family such that R𝑤 is the
fiber over 𝑤. Hence there exists a diffeomorphism 𝜙𝑤 : R𝑤 → R0 and

(𝜄R𝑤
)∗ = (𝜄R0)∗ ◦ (𝜙𝑤)∗.

Thus, the Lipschitz constant of 𝑢𝑤 for 𝑤 ∈ D𝑛−1 can be bounded uniformly. Thus, by shrinking 𝑈 if
necessary, we may assume that the Lipschitz constant of 𝑢 along the diskD𝑤 for any 𝑖 ∈ {1, . . . , 𝑛} and
𝑤 ∈ D𝑛−1 is uniformly bounded by a constant 𝐶. Therefore, if 𝑧 = (𝑧1, . . . , 𝑧𝑛), 𝑤 = (𝑤1, . . . , 𝑤𝑛) ∈
𝑈, then

𝑑 (𝑢(𝑧), 𝑢(𝑤)) ≤ 𝑑 (𝑢(𝑧1, 𝑧2, 𝑧3, . . . , 𝑧𝑛), 𝑢(𝑤1, 𝑧2, 𝑧3, . . . , 𝑧𝑛))
+ 𝑑 (𝑢(𝑤1, 𝑧2, 𝑧3 . . . , 𝑧𝑛), 𝑢(𝑤1, 𝑤2, 𝑧3 . . . , 𝑧𝑛)) + · · · +
𝑑 (𝑢(𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑛−1, 𝑧𝑛), 𝑢(𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑛−1, 𝑤𝑛))
≤ 𝐶 |𝑧1 − 𝑤1 | + 𝐶 |𝑧2 − 𝑤2 | + · · · + 𝐶 |𝑧𝑛 − 𝑤𝑛 |.

By Sedrakyan’s inequality, 1
𝑛

(∑𝑛
𝑖=1 |𝑧𝑖 − 𝑤𝑖 |

)2 ≤ ∑𝑛
𝑖=1 |𝑧𝑖 − 𝑤𝑖 |2, and thus

𝑑2(𝑢(𝑧), 𝑢(𝑤)) ≤ 𝐶2𝑛
(
|𝑧1 − 𝑤1 |2 + .... + |𝑧𝑛 − 𝑤𝑛 |2

)
= 𝐶2𝑛|𝑧 − 𝑤 |2, ∀𝑧, 𝑤 ∈ 𝑈.

In other words, 𝑢 is Lipschitz continuous in𝑈.
We now prove that 𝑢 is harmonic in 𝑈 = D𝑛 with respect to the Euclidean metric on D𝑛. For the

proof, we will denumerate the 𝑛-number of disks that make up𝑈 and write

𝑈 = D𝑛 = D1 × · · · × D𝑛.

Here the notation is abusive and we emphasize that D𝑖 is not the disk in C of radius 𝑖 as introduced in
Section 0.3. Furthermore, we denote D̂𝑖 to be the product of (𝑛 − 1) disks obtained by removing the
𝑖-th disk from D1 × · · · × D𝑛; i.e.

D̂𝑖 := D1 × · · · × D𝑖−1 × D𝑖+1 × · · · × D𝑛.

Let dvol0 (resp. �dvol0) be the Euclidean volume form of D𝑛 (resp. D̂𝑖). We use the coordinate

(𝑧1, . . . , 𝑧𝑛) ∈ D1 × · · · × D𝑛 and 𝑧𝑖 = 𝑥𝑖 +
√
−1𝑦𝑖 ∈ D𝑖

for𝑈.
For any 𝑤 := (𝑧2, . . . , 𝑧𝑛) ∈ D̂1, the restriction of 𝑢 toD1 ≃ D1 ×{𝑤}, denoted as 𝑢𝑤 , is a harmonic

map. The energy density function |∇𝑢𝑤 |2 of 𝑢𝑤 is an 𝐿1-function defined on D1 ≃ D1 × {𝑤}.
Following [KS93, §1.9], we have the identity

|∇𝑢𝑤 |2 = |𝑢∗(
𝜕

𝜕𝑥1
) |2(·, 𝑤) + |𝑢∗(

𝜕

𝜕𝑦1
) |2(·, 𝑤)(2.27)

as 𝐿1 functions on D1 ≃ D1 × {𝑤} for a.e. 𝑤 ∈ D̂1. For the sake of completeness, we prove (2.27)
here: For a fixed (𝑦1, 𝑤), let 𝐼 (𝑦1,𝑤) = {𝑥1 ∈ R | (𝑥1 +

√
−1𝑦1, 𝑤) ∈ D𝑛}. Following the notation

of [KS93, Theorem 1.9.6], we denote the energy density function of the 1-variable map 𝑢 |𝐼(𝑦1 ,𝑤) by
|𝑢∗( 𝜕

𝜕𝑥𝑖
) |2 and call it the 𝜕

𝜕𝑥1
-directional energy density function of 𝑢. By [KS93, Lemmas 1.9.1 &

1.9.4],

lim
𝜀→0

𝑑2(𝑢(𝑥1, 𝑦1, 𝑤), 𝑢(𝑥1 + 𝜀, 𝑦1, 𝑤)
𝜀2 = |𝑢∗(

𝜕

𝜕𝑥𝑖
) |2(𝑧1, 𝑤), for a.e. 𝑥1 ∈ 𝐼 (𝑦1,𝑤) .
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Similarly, for a fixed 𝑦1, let 𝐼𝑦1 = {𝑥1 ∈ R | 𝑥1 +
√
−1𝑦1 ∈ D1}. Following notation of [KS93,

Theorem 1.9.6], we denote the energy density function of the 1-variable map 𝑢𝑤 |𝐼𝑦1
by | (𝑢𝑤)∗( 𝜕

𝜕𝑥1
) |2.

By [KS93, Lemmas 1.9.1 & 1.9.4],

lim
𝜀→0

𝑑2(𝑢𝑤 (𝑥1, 𝑦1), 𝑢𝑤 (𝑥1 + 𝜀, 𝑦1)
𝜀2 = | (𝑢𝑤)∗(

𝜕

𝜕𝑥𝑖
) |2(𝑧1), for a.e. 𝑥 ∈ 𝐼𝑦1 , and a.e. 𝑤 ∈ D𝑖 .

Since 𝑢(𝑥1, 𝑦1, 𝑤) = 𝑢𝑤 (𝑥1, 𝑦1) and 𝑢(𝑥1 + 𝜀, 𝑦1, 𝑤) = 𝑢𝑤 (𝑥1 + 𝜀, 𝑦1), we conclude that

|𝑢∗(
𝜕

𝜕𝑥𝑖
) |2(𝑧1, 𝑤) = | (𝑢𝑤)∗(

𝜕

𝜕𝑥𝑖
) |2(𝑧1) as 𝐿1-functions for a.e. 𝑤 ∈ D̂1.

Similarly,

|𝑢∗(
𝜕

𝜕𝑦𝑖
) |2(𝑧1, 𝑤) = | (𝑢𝑤)∗(

𝜕

𝜕𝑦𝑖
) |2(𝑤) as 𝐿1-functions for a.e. 𝑤 ∈ D̂1.

By [KS93, Theorem 2.3.2 (2.3vi)],

|∇𝑢𝑤 |2 = | (𝑢𝑤)∗(
𝜕

𝜕𝑥
) |2 + |(𝑢𝑤)∗(

𝜕

𝜕𝑦
) |2.

Thus, (2.27) follows from the above three identities.
For notational simplicity, for each 𝑖 ∈ {1, . . . , 𝑛}, we will now denote���� 𝜕𝑢𝜕𝑥𝑖

����2 := |𝑢∗(
𝜕

𝜕𝑥𝑖
) |2,

���� 𝜕𝑢𝜕𝑦𝑖
����2 := |𝑢∗(

𝜕

𝜕𝑦𝑖
) |2.(2.28)

Let 𝑣 be the unique harmonic map in𝑈 with boundary values equal to those of 𝑢. We have a similar
identity to (2.27). More precisely, for any 𝑖 ∈ {1, . . . , 𝑛} and 𝑤 ∈ D̂𝑖 , we have

|∇𝑣𝑤 |2 = |𝑢∗(
𝜕

𝜕𝑥1
) |2(·, 𝑤) + |𝑣∗(

𝜕

𝜕𝑦1
) |2(·, 𝑤)

as 𝐿1 functions on D𝑖 ≃ D𝑖 × {𝑤} for a.e. 𝑤 ∈ D̂𝑖 . We shall use the same notation for 𝜈 as in (2.28).
Applying the Fubini-Tonelli Theorem, we express 𝐸𝑣 [𝑈] and 𝐸𝑢 [𝑈] as a sum of 𝑛-terms as follows:

𝐸𝑣 [𝑈] =

𝑛∑︁
𝑖=1

∫
D𝑛

���� 𝜕𝑣𝜕𝑥𝑖
����2 + ���� 𝜕𝑣𝜕𝑦𝑖

����2 dvol0

=

𝑛∑︁
𝑖=1

∫
D̂𝑖

(∫
D𝑖

���� 𝜕𝑣𝜕𝑥𝑖
����2 + ���� 𝜕𝑣𝜕𝑦𝑖

����2 𝑖𝑑𝑧𝑖 ∧ 𝑑𝑧𝑖2

)
d̂vol0

=

𝑛∑︁
𝑖=1

∫
D̂𝑖

(∫
D𝑖

|∇𝑣𝑤 |2
𝑖𝑑𝑧𝑖 ∧ 𝑑𝑧𝑖

2

)
d̂vol0,

and

𝐸𝑢 [𝑈] =

𝑛∑︁
𝑖=1

∫
D𝑛

���� 𝜕𝑢𝜕𝑥𝑖
����2 + ���� 𝜕𝑢𝜕𝑦𝑖

����2 dvol0

=

𝑛∑︁
𝑖=1

∫
D̂𝑖

(∫
D𝑖

���� 𝜕𝑢𝜕𝑥𝑖
����2 + ���� 𝜕𝑢𝜕𝑦𝑖

����2 𝑖𝑑𝑧𝑖 ∧ 𝑑𝑧𝑖2

)
d̂vol0

=

𝑛∑︁
𝑖=1

∫
D̂𝑖

(∫
D𝑖

|∇𝑢𝑤 |2
𝑖𝑑𝑧𝑖 ∧ 𝑑𝑧𝑖

2

)
d̂vol0.

Assume 𝐸𝑣 [𝑈] < 𝐸𝑢 [𝑈]. Then there exists some 𝑖 ∈ {1, . . . , 𝑛} such that∫
D̂𝑖

(∫
D𝑖

|∇𝑣𝑤 |2
𝑖𝑑𝑧𝑖 ∧ 𝑑𝑧𝑖

2

)
d̂vol0 <

∫
D̂𝑖

(∫
D𝑖

|∇𝑢𝑤 |2
𝑖𝑑𝑧𝑖 ∧ 𝑑𝑧𝑖

2

)
d̂vol0.

Thus, we conclude that there exists a subset 𝑍 of D̂𝑖 with positive Lebesgue measure such that for any

𝑤0 := (𝑐1, . . . , 𝑐𝑖−1, 𝑐𝑖+1, . . . , 𝑐𝑛) ∈ 𝑍,
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we have ∫
D𝑖

|∇𝑣𝑤0 |2
𝑖𝑑𝑧 ∧ 𝑑𝑧

2
<

∫
D𝑖

|∇𝑢𝑤0 |2
𝑖𝑑𝑧 ∧ 𝑑𝑧

2
.

This contradicts that 𝑢𝑤0 is a harmonic map. Thus, 𝐸𝑢 [𝑈] = 𝐸𝑣 [𝑈] and 𝑢 |𝑈 = 𝑣 is harmonic with
respect to the Euclidean metric on D𝑛.

Step 3: 𝑢 is pluriharmonic. Since 𝑢 is locally harmonic with respect to some Euclidean metric, the
set S(𝑢) of singular points of 𝑢 is a closed subset of 𝑋 of Hausdorff codimension by Lemma 2.10.

Let 𝑝 ∈ 𝑋\S(𝑢) and P ⊂ 𝑇
1,0
𝑝 (𝑋) be any complex 1-dimensional subspace. By Proposi-

tion 2.11.(ii), there exists some (𝐻1, . . . , 𝐻𝑛−1) ∈ 𝑇◦ such that 𝑝 ∈ 𝐻1∩ . . .∩𝐻𝑛−1 and𝐻1∩ . . .∩𝐻𝑛−1
is tangent to P. Write R := 𝐻1 ∩ . . . ∩ 𝐻𝑛−1 and R := R\Σ. By the construction of 𝑢, its restriction
𝑢 |R is the unique pluriharmonic section 𝑢R : R → R̃ ×𝜚R C of logarithmic energy growth. Thus, we
have

𝜕𝜕 |P𝑢(𝑝) = 𝜕𝜕𝑢R (𝑝) = 0.

Since 𝑝 is an arbitrary point of 𝑋\S(𝑢), this proves that 𝜕𝜕𝑢 = 0 over 𝑋\S(𝑢). By Lemma 2.21, 𝑢 is
pluriharmonic of logarithmic energy growth with respect to (𝑋, 𝐿).

Step 4: 𝑢 is harmonic with respect to any Kähler metric𝜔 on 𝑋 . Since harmonicity is a local property,
it is sufficient to prove this claim locally. Pick any 𝑥0 ∈ 𝑋 . Let (𝑈; 𝑧1, . . . , 𝑧𝑛) be the coordinate
neighborhood of 𝑥0 introduced in Claim 2.26. Since 𝑢 |𝑈 is harmonic with respect to the Euclidean
metric on𝑈, the singular subset S(𝑢) has Hausdorff codimension at least two. Let 𝑣 : 𝑈 → C be the
unique harmonic map in 𝑈 with respect to 𝜔 with boundary values equal to those of 𝑢. Since 𝑢 is
pluriharmonic, the restriction 𝑢 |𝑈\S(𝑢) is harmonic with respect to the metric 𝜔. Thus, the function
𝑑2(𝑢, 𝑣) is subharmonic when restricted to R(𝑢) ∩ R(𝑣). Since 𝑑2(𝑢, 𝑣) is bounded and S(𝑢) ∪ S(𝑣)
is a closed subset in𝑈 with Hausdorff codimension at least two, 𝑑2(𝑢, 𝑣) is weakly subharmonic. By
the maximum principle, and the fact that 𝑑2(𝑢, 𝑣) = 0 on 𝜕𝑈, it follows that 𝑑2(𝑢, 𝑣) = 0 on 𝑈. This
proves 𝑢 = 𝑣, meaning that 𝑢 is harmonic with respect to 𝜔.

Step 5: 𝑢 is unique. Let 𝑣̃ : 𝑋 → C be another 𝜚-equivariant pluriharmonic map of logarithmic
energy growth, and 𝑣 : 𝑋 → 𝑋 ×𝜚 C be its corresponding section (cf. Section 2.2). For 𝑞 ∈ 𝑋 , let
𝑠 ∈ U(𝑞). The restriction 𝑣𝑌𝑠 of 𝑣 is a pluriharmonic section of logarithmic energy growth with respect
to (𝑌𝑠, 𝐿 |𝑌𝑠 ). By the uniqueness assertion of the inductive hypothesis, we conclude that 𝑢𝑌𝑠 = 𝑣𝑌𝑠 .
Since 𝑞 is an arbitrary point in 𝑋 , we conclude that 𝑢 = 𝑣. This proves the uniqueness of 𝑢. □

3. Energy estimate for pluriharmonic maps into Euclidean buildings

In this section we will complete the proof of Theorem A.

3.1. Local energy estimate at infinity. — In this subsection we prove Theorem A.(iii) (cf. Propo-
sition 3.2). Let 𝑋 , 𝑋 , 𝐿, Σ and 𝜚 be as in Theorem 2.1. Set 𝑇 := |𝐿 |×(𝑛−1) and let 𝑇◦ be the Zariski
open subset of 𝑇 defined in Proposition 2.11.
Lemma 3.1. — Any smooth point 𝑥0 in the divisor Σ has an admissible coordinate neighborhood
(𝑈; 𝑧1, . . . , 𝑧𝑛) centered at 𝑥0 with 𝑈 ∩ Σ = (𝑧1 = 0) such that for any 𝑧∗ = (𝑧2, . . . , 𝑧𝑛) ∈ D𝑛−1, the
transverse disk 𝑧 ↦→ (𝑧, 𝑧∗) is contained in some complete intersection R𝑧∗ := 𝐻1 ∩ · · · ∩𝐻𝑛−1, where
(𝐻1, . . . , 𝐻𝑛−1) ∈ 𝑇◦.
Proof. — Since 𝑥0 ∈ Σ is a smooth point, by Proposition 2.11, we can choose 𝑠2, . . . , 𝑠𝑛 ∈ 𝐻0(𝑋, 𝐿)
such that

(a) (𝑌𝑠2 , . . . , 𝑌𝑠𝑛) ∈ 𝑇◦. In particular, the hypersurfaces𝑌𝑠2 , . . . , 𝑌𝑠𝑛 are smooth, where𝑌𝑠𝑖 := 𝑠−1
𝑖
(0).

(b) The divisor
∑𝑛

𝑖=2𝑌𝑠𝑖 + Σ is normal crossing.
(c) 𝑥0 ∈ 𝑌𝑠2 ∩ . . . ∩ 𝑌𝑠𝑛 .
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Pick some 𝑠1 ∈ 𝐻0(𝑋, 𝐿) such that 𝑥0 ∉ (𝑠1 = 0). Let 𝑢𝑖 := 𝑠𝑖
𝑠1

. Then for any 𝑖 ∈ {2, . . . , 𝑚},
𝑢𝑖 is a rational function on 𝑋 that is regular on some neighborhood 𝑈 of 𝑥0. After shrinking 𝑈 if
necessary, we can assume that there is a holomorphic function 𝑣 ∈ 𝒪(𝑈) such that 𝑑𝑣(𝑥0) ≠ 0 and
Σ ∩𝑈 = (𝑣 = 0) . By Item (b), one has 𝑑𝑣 ∧ 𝑑𝑢2 ∧ . . . ∧ 𝑑𝑢𝑛 (𝑥0) ≠ 0. After possibly shrinking 𝑈,
we may assume that

(1) 𝑑𝑣 ∧ 𝑑𝑢2 ∧ . . . ∧ 𝑑𝑢𝑛 (𝑥) ≠ 0 for all 𝑥 ∈ 𝑈;
(2) The map

𝜑 : 𝑈 → C𝑛

𝑥 ↦→ (𝑣(𝑥), 𝑢2(𝑥), . . . , 𝑢𝑛 (𝑥))
is biholomorphic to its image 𝜑(𝑈) = D𝑛

𝜀 .

Thus, the map 𝜑 defines an admissible coordinate neighborhood (𝑈; 𝑧1, . . . , 𝑧𝑛; 𝜑) of 𝑈 centering at
𝑥0. For any 𝜁 := (𝜁2, . . . , 𝜁𝑛) ∈ D𝑛−1

𝜀 , the transverse disk

D𝜁 := {(𝑧, 𝜁2, . . . , 𝜁𝑛) ∈ D𝑛
𝜀 | |𝑧 | < 𝜀}

is contained in 𝑈 ∩ (𝑢2 − 𝜁2 = 0) ∩ . . . ∩ (𝑢𝑛 − 𝜁𝑛). The later is contained in (𝑠2 − 𝜁2𝑠1 =

0) ∩ . . . ∩ (𝑠𝑛 − 𝜁𝑛𝑠1 = 0). Since 𝑇◦ is Zariski open in 𝑇 , one can shrink 𝜀 such that(
𝑌𝑠2−𝜁2𝑠0 , . . . , 𝑌𝑠𝑛−𝜁𝑛𝑠0

)
∈ 𝑇◦

for each 𝜁 ∈ D𝑛−1
𝜀 . The lemma follows after we compose 𝜑 with the rescaling

D𝑛
𝜀 → D𝑛

(𝑧1, . . . , 𝑧𝑛) ↦→ ( 𝑧1

𝜀
, . . . ,

𝑧𝑛

𝜀
).

□

Proposition 3.2. — Let 𝑋 , 𝑋 , 𝐿, Σ and 𝜚 be as in Theorem 2.1. Let 𝑢̃ : 𝑋 → Δ(𝐺) be the 𝜚-
equivariant pluriharmonic map with logarithmic energy growth with respect to (𝑋, 𝐿) constructed in
Theorem 2.1, and let 𝑢 be its corresponding section. For any smooth point 𝑥0 ∈ Σ and an admissible
coordinate neighborhood (𝑈; 𝑧1, . . . , 𝑧𝑛) centered at 𝑥0, as constructed in Lemma 3.1, there exists a
constant 𝐶 > 0 such that

(3.1)
���� 𝜕𝑢𝜕𝑧 𝑗 (𝑧1, 𝑧2, . . . , 𝑧𝑛)

����2 ≤ Λ2 for any (𝑧1, . . . , 𝑧𝑛) ∈ D∗
1
2
× D𝑛−1

1
2
, ∀ 𝑗 = 2, . . . , 𝑛,

(3.2) 0 ≤
∫
D
𝑟, 1

2
×D𝑛−1

1
2

���� 𝜕𝑢𝜕𝑧1
(𝑧1, 𝑧2, . . . , 𝑧𝑛)

����2 dvol𝜔 −
𝐿2
𝛾

2𝜋
log

1
𝑟
· Vol

(
D𝑛−1

1
2

)
≤ 𝐶, ∀ 0 < 𝑟 <

1
2
,

−
𝐿2
𝛾

2𝜋
log 𝑟 · Vol

(
D𝑛−1

1
2

)
≤

∫
D
𝑟, 1

2
×D𝑛−1

1
2

|∇𝑢 |2𝜔dvol𝜔 ≤ −
𝐿2
𝛾

2𝜋
log 𝑟 · Vol

(
D𝑛−1

1
2

)
+ 𝐶, ∀ 0 < 𝑟 <

1
2
.

(3.3)

−
𝐿2
𝛾

2𝜋
log 𝑟 · Vol

(
D𝑛−1

1
2

)
≤

∫
D
𝑟, 1

2
×D𝑛−1

1
2

|∇𝑢 |2𝜔𝑃
𝑑vol𝜔𝑃

≤ −
𝐿2
𝛾

2𝜋
log 𝑟 · Vol

(
D𝑛−1

1
2

)
+ 𝐶, ∀ 0 < 𝑟 <

1
2
.

(3.4)

Here

– 𝜔 :=
∑𝑛

𝑖=1

√
−1
2 𝑑𝑧𝑖 ∧ 𝑑𝑧𝑖 (resp. 𝜔𝑃 ) is the standard Euclidean metric (resp. Poincaré-type metric

defined in (1.2)) on𝑈∗ := 𝑈\Σ, 𝑑vol𝜔 (resp. 𝑑vol𝜔𝑃
) is the volume form of 𝜔 (resp. 𝜔𝑃) on𝑈∗,

and Vol
(
D𝑛−1

1
2

)
is the Euclidean volume of D𝑛−1

1
2

.

– 𝛾 ∈ 𝜋1(𝑋) is the element corresponding to the loop 𝜃 ↦→ ( 1
2𝑒

√
−1𝜃 , 0, . . . , 0) around the irre-

ducible component Σ containing 𝑥0;
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– 𝐿𝛾 is the translation length of 𝜚(𝛾) defined in Definition 2.7.

Moreover, the above energy
∫
D
𝑟, 1

2
×D𝑛−1

1
2

|∇𝑢 |2𝑑vol𝜔 is finite provided that 𝜚(𝛾) ∈ 𝐺 (𝐾) is quasi-

unipotent.
Proof. — In Theorem 2.1, we prove that 𝑢̃ is harmonic with respect to any choice of a Kähler metric
on 𝑋 . By Theorem 2.8, 𝑢̃ is locally Lipschitz continuous with respect to the distance function on 𝑋
induced by the metric 𝜔. Let Λ > 0 be the Lipschitz constant of 𝑢̃ in 𝜋−1

𝑋
(𝜕D 1

2
× D 1

2
× · · · × D 1

2
).

Fix 𝑧∗ := (𝑧2∗, . . . , 𝑧𝑛∗), 𝑤∗ := (𝑤2∗, . . . , 𝑤𝑛∗) ∈ D𝑛−1
1
2

. Then

𝛿2
𝑧∗,𝑤∗ (𝑧) := 𝑑2(𝑢̃(𝑧, 𝑧∗), 𝑢̃(𝑧, 𝑤∗)) ≤ Λ2 |𝑧∗ − 𝑤∗ |2 for |𝑧 | = 1

2
.

Let R𝑧∗ and R𝑤∗ be the complete intersection curves in Lemma 3.1. Denote R𝑧∗ := R𝑧∗∩𝑋 and R𝑤∗ :=
R𝑤∗ ∩ 𝑋 . Let 𝑢R𝑧∗ and 𝑢R𝑤∗ be induced maps as in (2.5) of the compositions of 𝑢 and the inclusion
maps R𝑧∗ ↩→ 𝑋 and R𝑧∗ ↩→ 𝑋 respectively. Let 𝑢̃R𝑧∗ and 𝑢̃R𝑤∗ be the corresponding equivariant maps
from the universal covers to Δ(𝐺) as in (2.5). By the construction of 𝑢̃ in Theorem 2.1, 𝑢̃R𝑧∗ and 𝑢̃R𝑤∗
are harmonic maps of logarithmic growth. Hence the function 𝛿2

𝑧∗,𝑤∗ (𝑧) = 𝑑
2(𝑢(𝑧1, 𝑧∗), 𝑢(𝑧1, 𝑤∗)) is

a continuout subharmonic function satisfying

lim
|𝑧 |→0

𝛿2
𝑧∗,𝑤∗ (𝑧) + 𝜀 log |𝑧 | = −∞.

Thus, an argument used to prove (2.24) also proves

(3.5) 𝛿2
𝑧∗,𝑤∗ (𝑧) ≤ Λ2 |𝑧∗ − 𝑤∗ |2 ∀𝑧 ∈ D∗

1
2
.

It yields (3.1).
By Theorem 2.1, 𝑢̃ has logarithmic energy growth with respect to (𝑋, 𝐿). By Definition 3.8, for

any fixed 𝑧∗ ∈ D𝑛−1
1
2

, there exists a constant 𝐶 > 0 such that we have

(3.6) −
𝐿2
𝛾

2𝜋
log 𝑟 ≤ 𝐸 𝑢̃R𝑧∗ [D𝑟 , 1

2
] ≤ −

𝐿2
𝛾

2𝜋
log 𝑟 + 𝐶

for any 𝑟 ∈ (0, 1
2 ). Such constant 𝐶 in (3.6) depends only on 𝐿𝛾 and the Lipschitz estimate of 𝑢̃R𝑧∗ on

𝜕D 1
2
. Thus, 𝐶 is uniform for any 𝑧∗ ∈ D𝑛−1

1
2

. Integrating (3.6) over 𝑧∗ ∈ D𝑛−1
1
2

while noting

𝐸 𝑢̃R𝑧∗ [D𝑟 , 1
2
] =

∫
D
𝑟, 1

2

���� 𝜕𝑢𝜕𝑧1

����2 (𝑧, 𝑧∗) √−1𝑑𝑧 ∧ 𝑑𝑧
2

,(3.7)

we conclude (3.2).
Since ∫

D
𝑟, 1

2
×D𝑛−1

1
2

|∇𝑢 |2𝑑vol𝜔 =

∫
D
𝑟, 1

2
×D𝑛−1

1
2

©­«
���� 𝜕𝑢𝜕𝑧1

����2 + 𝑛∑︁
𝑗=2

���� 𝜕𝑢𝜕𝑧 𝑗
����2ª®¬ 𝑑vol𝜔 ,

the assertion (3.3) follows from (3.1) and (3.2).
Consider the Poincaré-type metric

𝜔𝑃 =

√
−1𝑑𝑧1 ∧ 𝑑𝑧1

|𝑧1 |2(log |𝑧1 |2)2 +
𝑛∑︁

𝑘=2

√
−1𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘 .

Denote by (𝑃𝑖 𝑗) and (𝑃𝑖 𝑗) the components of this metric tensor and its inverse. Note that∫
D
𝑟, 1

2
×D𝑛−1

1
2

|∇𝑢 |2𝜔𝑃
𝑑vol𝜔𝑃

=

∫
D
𝑟, 1

2
×D𝑛−1

1
2

©­«𝑃11̄
���� 𝜕𝑢𝜕𝑧1

����2 + 𝑛∑︁
𝑗=2

𝑃 𝑗 𝑗

���� 𝜕𝑢𝜕𝑧 𝑗
����2ª®¬ 𝑑vol𝜔𝑃

=

∫
D
𝑟, 1

2
×D𝑛−1

1
2

©­«
���� 𝜕𝑢𝜕𝑧1

����2 + 1
|𝑧1 |2(log |𝑧1 |2)2

𝑛∑︁
𝑗=2

���� 𝜕𝑢𝜕𝑧 𝑗
����2ª®¬ 𝑑vol𝜔0 .
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Then (3.4) follows from (3.1) and (3.2).
To prove the last claim, it then suffices to show that 𝐿𝛾 = 0. Since the finiteness of local energy is

preserved under finite unramified covers, we can assume that 𝜚(𝛾) is unipotent. Then there exists a
Borel subgroup 𝐵 of𝐺 such that 𝜚(𝛾) ∈ 𝑈 (𝐾), where𝑈 is the unipotent radical of 𝐵. Note that𝑈 (𝐾)
fixes a sector-germ of the standard apartment 𝐴, which means that there exists a Weyl chamber 𝐶𝑣 of
the apartment 𝐴 such that if 𝑢 in𝑈 (𝐾), then 𝑢 fixes 𝑥 +𝐶𝑣 , for some 𝑥 in 𝐴. In particular, 𝜚(𝛾) fixes a
point 𝑦 ∈ 𝐴. Consider the minimal closed convex 𝜚(𝜋1(𝑋))-invariant subset C ⊂ Δ(𝐺) constructed
in Lemma 2.2. By Lemma 2.3, the closest point projection map Π : Δ(𝐺) → C is a 𝐺-equivariant
map, which implies that 𝜚(𝛾)Π(𝑦) = Π(𝜚(𝛾)𝑦) = Π(𝑦). By (2.3), this implies that 𝐿𝛾 = 0. The
proposition is proved. □

3.2. Logarithmic energy growth (II). — In this subsection we complete the proof of Theorem A.
We shall give a more intrinsic definition of logarithmic energy growth than Definition 2.15 (cf.
Definition 3.8).
Lemma 3.3. — Let (𝑋, Σ) be a log smooth pair, 𝐿 be a line bundle on 𝑋 . Assume that 𝑉 ⊂ |𝐿 | is a
linear system which is base-point-free. Then a generic hypersurface 𝐻 in 𝑉 is smooth and 𝐻 + Σ is
also simple normal crossing.
Proof. — We write Σ =

∑𝑚
𝑖=1 Σ𝑖 into sum of irreducible components. For 𝐼 ⊂ {1, . . . , 𝑚}, denote by

Σ𝐼 :=
⋂

𝑖𝑘∈𝐼 Σ𝑖𝑘 which is a closed smooth subvariety of 𝑋 . Then by the Bertini theorem, for each 𝐼
with dimΣ𝐼 ⩾ 1, there is a Zariski open set 𝑉𝐼 of 𝑉 such that every hypersurface 𝐻 ∈ 𝑉𝐼 satisfies that
𝐻 and 𝐻 ∩ Σ𝐼 are both smooth. Denote by 𝑉 ′ :=

⋂
𝐼 𝑉𝐼 where 𝐼 ranges over all subsets of {1, . . . , 𝑚}

such that dimΣ𝐼 ⩾ 1. Then 𝑉 ′ is a Zariski dense open set of 𝑉 . It follows that every hypersurface
𝐻 ∈ 𝑉 ′ is smooth and 𝐻 ∩ Σ𝐼 is smooth for each Σ𝐼 with dimΣ𝐼 ⩾ 1. This implies that 𝐻 ∪ Σ is also
simple normal crossing. □

Lemma 3.4. — Let 𝑋 , 𝑋 , 𝐿, Σ and 𝜚 be as in Theorem 2.1. Let 𝑢̃ : 𝑋 → Δ(𝐺) be the 𝜚-equivariant
pluriharmonic map with logarithmic energy growth with respect to (𝑋, 𝐿) constructed in Theorem 2.1,
and let 𝑢 be its corresponding section. Choose any smooth point 𝑥0 ∈ Σ. Let (𝑈;𝑤1, . . . , 𝑤𝑛) be any
admissible coordinate neighborhood centered at 𝑝 such that 𝑈 ∩ Σ = (𝑤1 = 0). Then there exists a
positive constant 𝐶 such that for any 0 < 𝑟 < 1

2 , and any 𝑤∗ := (𝑤2, . . . , 𝑤𝑛) ∈ D𝑛−1
1
2

, one has

(3.8) 0 ≤
∫
D
𝑟, 1

2

���� 𝜕𝑢𝜕𝑤1
(𝑤1, 𝑤∗)

����2 𝑖𝑑𝑤1 ∧ 𝑑𝑤̄1

2
−
𝐿2
𝛾

2𝜋
log

1
𝑟
≤ 𝐶.

Here 𝐿𝛾 is the translation length of 𝜚(𝛾) with 𝛾 ∈ 𝜋1(𝑋) corresponding to the loop 𝜃 ↦→
( 1

2𝑒
𝑖 𝜃 , 0, . . . , 0).

Proof. — By Lemma 3.1, we can choose an admissible coordinate neighborhood (𝑉 ; 𝑧1, . . . , 𝑧𝑛)
centered at 𝑝 satisfying the properties therein, such that 𝑧1 = 𝑤1. After shrinking 𝑈 if necessary, we
may assume that there is a constant 𝐶 > 0 such that for any 𝑗 ∈ {2, . . . , 𝑛}, we have

|
𝜕𝑧 𝑗

𝜕𝑤1
(𝑤1, 𝑤∗) | ≤ 𝐶

for any (𝑤1, 𝑤∗) ∈ 𝑈. Then by (3.1) and

𝜕𝑢

𝜕𝑤1
(𝑤1, 𝑤∗) =

𝜕𝑢

𝜕𝑧1
(𝑧1, 𝑧∗)

𝜕𝑧1

𝜕𝑤1
+

𝑛∑︁
𝑗=2

𝜕𝑢

𝜕𝑧 𝑗
(𝑧1, 𝑧∗)

𝜕𝑧 𝑗

𝜕𝑤1
=
𝜕𝑢

𝜕𝑧1
(𝑧1, 𝑧∗) +

𝑛∑︁
𝑗=2

𝜕𝑢

𝜕𝑧 𝑗
(𝑧1, 𝑧∗)

𝜕𝑧 𝑗

𝜕𝑤1
,

there is a constant 𝐶2 > 0 such that

| 𝜕𝑢
𝜕𝑤1

(𝑤1, 𝑤∗) | ≤ | 𝜕𝑢
𝜕𝑧1

(𝑧1, 𝑧∗) | + 𝐶,

for any (𝑤1, 𝑤∗) ∈ 𝑈. Thus, (3.8) follows from the same argument used in the proof of Theo-
rem 2.23 (ii), replacing (2.19) and (2.20) with (3.1) and (3.2). We leave the details to the reader. □
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Lemma 3.5. — Let 𝑋 , 𝑋 , 𝐿, Σ, and 𝜚 be as in Theorem 2.1. Let 𝑢̃ : 𝑋 → Δ(𝐺) be the 𝜚-
equivariant pluriharmonic map with logarithmic energy growth with respect to (𝑋, 𝐿) constructed in
Theorem 2.1. Assume that 𝜇 : 𝑋1 → 𝑋 is a birational morphism such that 𝜇 |𝜇−1 (𝑋) : 𝜇−1(𝑋) → 𝑋 is
an isomorphism and Σ1 := 𝑋1\𝜇−1(𝑋) is also a simple normal crossing divisor. If 𝐿1 is a sufficiently
ample line bundle on 𝑋1, then 𝑢̃ also has logarithmic energy growth with respect to (𝑋1, 𝐿1).
Proof. — Consider the linear system |𝜇∗𝐿 | on 𝑋1. It is a free linear system as 𝐿 is very ample. Note
that

𝐻0(𝑋1, 𝜇
∗𝐿) = 𝐻0(𝑋, 𝜇∗(𝜇∗𝐿)) = 𝐻0(𝑋, 𝐿 ⊗ 𝜇∗(𝒪𝑋1

)) = 𝐻0(𝑋, 𝐿),
where the second equality is due to projection formula and the last equality follows from Zariski’s
main theorem 𝜇∗𝒪𝑋1

= 𝒪
𝑋

. It follows that

𝜇∗ : 𝐻0(𝑋, 𝐿) → 𝐻0(𝑋1, 𝜇
∗𝐿)(3.9)

is an isomorphism.
Denote 𝑇 := |𝐿 |×(𝑛−1) and let 𝑇◦ be the Zariski open subset of 𝑇 constructed in Proposition 2.11.

Similarly, we define 𝑇1 := |𝜇∗𝐿 |×(𝑛−1) and let 𝑇◦
1 be the Zariski open subset of 𝑇 such that, for every

(𝐻1, . . . , 𝐻𝑛−1) ∈ 𝑇◦
1 , the hypersurfaces 𝐻1, . . . , 𝐻𝑛−1 are smooth, and the divisor𝐻1+· · ·+𝐻𝑛−1+Σ1

is simple normal crossing. By Lemma 3.3, one can show that 𝑇◦
1 is a non-empty Zariski open subset

of 𝑇1. The isomorphism (3.9) induces an isomorphism 𝑖 : 𝑇1 → 𝑇 . Denote 𝑇◦◦ := 𝑇◦ ∩ 𝑖(𝑇◦
1 ). It is a

non-empty Zariski open subset of 𝑇 . Moreover, by Lemma 3.3 along with the same arguments in the
proof of Proposition 2.11, for any 𝑥0 ∈ 𝑋 , there exists (𝐻1, . . . , 𝐻𝑛−1) ∈ 𝑇◦◦ such that

𝑥0 ∈ R := 𝐻1 ∩ · · · ∩ 𝐻𝑛−1.

Denote R := R\Σ. By Theorem 2.1, 𝑢̃R : R̃ → C is a 𝜚R-equivariant harmonic map with logarithmic
energy growth.

By our construction of 𝑇◦◦, it follows that 𝜇∗𝐻1, . . . , 𝜇
∗𝐻𝑛−1 are all smooth, and

∑𝑛−1
𝑗=1 𝜇

∗𝐻 𝑗 + Σ1

is simple normal crossing. Thus, R1 := 𝜇∗𝐻1 ∩ · · · ∩ 𝜇∗𝐻𝑛−1 is a smooth projective curve in 𝑋1.
Denote R1 := R1\Σ1. Then 𝜇 |R1 : R1 → R is an isomorphism.

We apply Theorem 2.1 again to construct another 𝜚-equivariant harmonic map 𝑣̃ : 𝑋 → C of
logarithmic energy growth with respect to (𝑋1, 𝐿1). By the same proof of Lemma 3.1, there exists an
admissible coordinate neighborhood (𝑈; 𝑧1, . . . , 𝑧𝑛) centered at 𝑥0 with 𝑈 ∩ Σ1 = (𝑧1 = 0) such that
the transverse disk 𝑧 ↦→ (𝑧, 0, . . . , 0) is contained in R1. It follows from Lemma 3.4 that 𝑣̃R : R̃ → C
is a 𝜚R-equivariant harmonic map with logarithmic energy growth. By Theorem 2.14, we know that
𝜋1(R) → 𝜋1(𝑋) is surjective. Therefore, 𝜚R : 𝜋1(R) → 𝐺 (𝐾) also fixes C and does not fix a point
at infinity of C. By the unicity property in Lemma 2.18, we conclude that 𝑢R = 𝑣R where 𝑢R and 𝑣R
are defined in (2.5). Since 𝑥0 is an arbitrary point in 𝑋 , it follows that 𝑢 = 𝑣 holds over the whole 𝑋 .
The lemma is proved. □

Proposition 3.6. — Let 𝑋1 and 𝑋2 be two smooth projective compactifications of 𝑋 with Σ𝑖 := 𝑋 𝑖\𝑋
a simple normal crossing divisor. Let 𝐿1 and 𝐿2 be sufficiently ample line bundles on 𝑋1 and 𝑋2
respectively. For 𝑖 = 1, 2, let 𝑢̃𝑖 : 𝑋 → C be the unique 𝜚-equivariant harmonic map of logarithmic
energy growth with respect to (𝑋 𝑖 , 𝐿𝑖) constructed in Theorem 2.1. Then 𝑢̃1 = 𝑢̃2.
Proof. — Since 𝑋1 is birational to 𝑋2, we can blow-up the indeterminacy of the birational map
𝑋1 d 𝑋2 to obtain a birational morphism 𝑋3 → 𝑋1 such that we have

𝑋3

𝑋1 𝑋2

𝜇2
𝜇1

Here 𝜇1 and 𝜇2 are both isomorphic over 𝑋 . We may assume that Σ3 = 𝑋3\𝑋 is also a simple normal
crossing divisor. Fix a sufficiently ample line bundle 𝐿3 on 𝑋3. By Theorem 2.1, there is a unique
𝜚-equivariant pluriharmonic map 𝑢̃3 : 𝑋 → C of logarithmic energy growth with respect to (𝑋3, 𝐿3).
Then by Lemma 3.5, 𝑢̃1 = 𝑢̃3 = 𝑢̃2. The proposition is proved. □

Lemma 3.5 enables us to obtain the following energy estimate for the harmonic map.
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Proposition 3.7 (local energy estimate at each point). — Let 𝑋 , 𝑋 , 𝐿, Σ and 𝜚 be as in Theorem 2.1.
Let 𝑢̃ : 𝑋 → Δ(𝐺) be the 𝜚-equivariant pluriharmonic map with logarithmic energy growth with
respect to (𝑋, 𝐿) constructed in Theorem 2.1, and 𝑢 be its corresponding section. For any holomorphic
map 𝑓 : D → 𝑋 such that 𝑓 −1(Σ) ⊂ {0}, we denote by 𝑢 𝑓 : D∗ → D × 𝑓 ∗ 𝜚 C the induced harmonic
section of 𝑢 ◦ 𝑓 defined in (2.5) and let 𝑢 𝑓 : D̃∗ → C be the corresponding 𝑓 ∗𝜚-equivariant harmonic
map of 𝑢 𝑓 . Then there is a positive constant 𝐶 such that for any 0 < 𝑟1 < 𝑟2 <

1
2 , one has

(3.10)
𝐿2
𝛾

2𝜋
log

𝑟2

𝑟1
≤ 𝐸𝑢 𝑓 [D𝑟1,𝑟2] ≤

𝐿2
𝛾

2𝜋
log

𝑟2

𝑟1
+ 𝐶,

where 𝐿𝛾 is the translation length of 𝜚(𝛾) with 𝛾 ∈ 𝜋1(𝑋) corresponding to the loop 𝜃 ↦→ 𝑓 ( 1
2𝑒

𝑖 𝜃 ).
Proof. — We can shrink D such that 𝑓 |D∗ : D∗ → 𝑋 is an embedding. We can take an embedded
desingularization for the image 𝐶 := 𝑓 (D) to obtain a birational morphism 𝜇 : 𝑋1 → 𝑋 such that

(a) 𝜇−1(Σ) = Σ1 is a simple normal crossing divisor.
(b) 𝜇 is an isomorphism over 𝑋 .
(c) The strict transform 𝐶1 of 𝐶 is smooth, and intersects with Σ1 transversely. In particular,

𝑥0 := 𝐶1 ∩ Σ1 is a smooth point of Σ1.

Thus, we can take an admissible coordinate neighborhood (𝑈; 𝑧1, . . . , 𝑧𝑛) centered at 𝑥0 such that
𝑈 ∩ Σ1 = (𝑧1 = 0) and 𝐶1 = (𝑧2 = · · · = 𝑧𝑛 = 0). Let 𝑓1 : D → 𝑋1 be the lift of 𝑓 . Then we can
reparametrize D such that 𝑓1(𝑧) = (𝑧𝑘 , 0, . . . , 0).

By (3.8), there exists a positive constant 𝐶 such that for any 0 < 𝑟1 < 𝑟2 <
1
2 , one has

(3.11) 0 ≤
∫
D𝑟1 ,𝑟2

���� 𝜕𝑢̃𝜕𝑧1
(𝑧1, 0, . . . , 0)

����2 √
−1𝑑𝑧1 ∧ 𝑑𝑧1

2
−
𝐿2
𝛾0

2𝜋
log

𝑟2

𝑟1
≤ 𝐶.

Here 𝐿𝛾0 is the translation length of 𝜚(𝛾0) with 𝛾0 ∈ 𝜋1(𝑋) corresponding to the loop 𝜃 ↦→
(𝑟𝑒𝑖 𝜃 , 0, . . . , 0). Since ����𝑑𝑢 𝑓1

𝑑𝑧
(𝑧)

����2 =

����𝑘𝑧𝑘−1 𝜕𝑢̃

𝜕𝑧1
(𝑧𝑘 , 0, . . . , 0)

����2 ,
then for any 0 < 𝑟1 < 𝑟2 <

1
2 , one has

𝐸𝑢 𝑓1 [D𝑟1,𝑟2] =
∫
D𝑟1 ,𝑟2

����𝑑𝑢 𝑓1

𝑑𝑧
(𝑧)

����2 √
−1𝑑𝑧 ∧ 𝑑𝑧

2
= 𝑘

∫
D
𝑟𝑘1 ,𝑟𝑘2

���� 𝜕𝑢̃𝜕𝑧1
(𝑧1, 0, . . . , 0)

����2 √
−1𝑑𝑧1 ∧ 𝑑𝑧1

2
.

Let 𝑢 𝑓1 : D∗ → D∗ × 𝑓 ∗1 𝜚 C be the induced section of 𝑢 ◦ 𝑓1 defined in (2.5). By Item (b), we have
𝑢 𝑓1 = 𝑢 𝑓 . The above equality implies

(3.12) 𝑘2 𝐿
2
𝛾0

2𝜋
log

𝑟2

𝑟1
≤ 𝐸𝑢 𝑓 [D𝑟1,𝑟2] ≤ 𝑘2 𝐿

2
𝛾0

2𝜋
log

𝑟2

𝑟1
+ 𝐶𝑘2.

for any 0 < 𝑟1 < 𝑟2 <
1
2 . For the loop 𝛾 ∈ 𝜋1(𝑋) defined by 𝜃 ↦→ 𝑓1( 1

2𝑒
𝑖 𝜃 ), the translation length 𝐿𝛾

of 𝜚(𝛾) is equal to 𝑘𝐿𝛾0 . (3.12) implies (3.10). The theorem is proved. □

By Proposition 3.7, we can revise Definition 2.15 as follows.
Definition 3.8 (logarithmic energy growth (II)). — Let 𝑋 be a smooth quasi-projective variety, 𝐺
be a semi-simple algebraic group over a non-archimedean local field 𝐾 , and let 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾)
be a Zariski dense representation. A 𝜚-equivariant harmonic map 𝑢̃ : 𝑋 → Δ(𝐺) has logarithmic
energy growth if for any holomorphic map 𝑓 : D∗ → 𝑋 with no essential singularity at the origin
(i.e. for some, thus any, smooth projective compactification 𝑋 of 𝑋 , 𝑓 extends to a holomorphic map
𝑓 : D→ 𝑋), there is a positive constant 𝐶 such that for any 𝑟 ∈ (0, 1

2 ), one has

(3.13) −
𝐿2
𝛾

2𝜋
log 𝑟 ≤ 𝐸𝑢 𝑓 [D𝑟 , 1

2
] ≤ −

𝐿2
𝛾

2𝜋
log 𝑟 + 𝐶,

where 𝐿𝛾 is the translation length of 𝜚(𝛾) with 𝛾 ∈ 𝜋1(𝑋) corresponding to the loop 𝜃 ↦→ 𝑓 ( 1
2𝑒

𝑖 𝜃 ).
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In summary, we have the following result, which proves the second assertion in Theorem A.(i) and
Theorem A.(iv).
Theorem 3.9. — The pluriharmonic map 𝑢̃ constructed in Theorem 2.1 has logarithmic energy
growth in the sense of Definition 3.8. Moreover, if 𝑓 : 𝑌 → 𝑋 is a morphism from another smooth
quasi-projective variety𝑌 , then for the section 𝑢 𝑓 : 𝑌 → 𝑌 × 𝑓 ∗ 𝜚 C defined in (2.5), the corresponding
map 𝑢 𝑓 is a 𝑓 ∗𝜚-equivariant pluriharmonic map of logarithmic energy growth. Moreover, 𝑢 𝑓 is
harmonic with respect to any Kähler metric compatible with the complex structure of 𝑋 .
Proof. — The first assertion follows from Proposition 3.7. The fact that 𝑢 𝑓 is pluriharmonic can
be deduced from the definition of pluriharmonic. Furthermore, consider any holomorphic map
𝑔 : D∗ → 𝑌 with no essential singularity at the origin. Then 𝑓 ◦ 𝑔 : D∗ → 𝑋 has no essential
singularity at the origin.

Denote by 𝐿𝛾 is the translation length of 𝑓 ∗𝜚(𝛾) with 𝛾 ∈ 𝜋1(𝑌 ) corresponding to the loop
𝜃 ↦→ 𝑔( 1

2𝑒
𝑖 𝜃 ). Then 𝐿𝛾 is the translation length of 𝜚(𝛾′) with 𝛾′ ∈ 𝜋1(𝑋) corresponding to the loop

𝜃 ↦→ 𝑓 ◦ 𝑔( 1
2𝑒

𝑖 𝜃 ). By (3.10) there is a positive constant 𝐶 such that for any 𝑟 ∈ (0, 1
2 ), one has

−
𝐿2
𝛾

2𝜋
log 𝑟 ≤ 𝐸𝑢 𝑓 ◦𝑔 [D𝑟 , 1

2
] ≤ −

𝐿2
𝛾

2𝜋
log 𝑟 + 𝐶.

The harmonicity of 𝑢 𝑓 with respect to any Kähler metric 𝜔 can be established using the same method
in Step 4 of the proof of Theorem 2.1. □

4. Pluriharmonic maps and logarithmic symmetric differentials

Let 𝑋 be a smooth quasi-projective variety and and let 𝐺 be a semisimple algebraic group over a
non-archimedean local field 𝐾 . Assume that 𝜚 : 𝜋1(𝑋) → 𝐺 (𝐾) is a Zariski dense representation. By
Theorem A, there is a 𝜚-equivariant pluriharmonic map 𝑢̃ : 𝑋 → Δ(𝐺), that is locally Lipschitz and
has logarithmic energy growth. In this section we will construct logarithmic symmetric differentials
on 𝑋 using this pluriharmonic map 𝑢. The construction we presented here is close to that in [Kli13]
(cf. [Eys04,Kat97,Zuo96] for other slightly different construction).

4.1. Finite étale cover and logarithmic symmetric differential. —
Definition 4.1 (Galois morphism). — A covering map 𝛾 : 𝑋 → 𝑌 of varieties is called Galois with
group 𝐺 if there exists a finite group 𝐺 ⊂ Aut(𝑋) such that 𝛾 is isomorphic to the quotient map.
Lemma 4.2. — Let 𝑓 : (𝑋, Σ𝑋) → (𝑌, Σ𝑌 ) be a surjective morphism between two log smooth pairs
of dimension 𝑛. Assume that the restriction of 𝑓 to 𝑋 is étale and Galois, with Galois group 𝐺. If
𝐻0(𝑋, Sym𝑘Ω

𝑋
(logΣ𝑋)) ≠ 0 for some positive integer 𝑘 , then 𝐻0(𝑌, Sym𝑚Ω

𝑌
(logΣ𝑌 )) ≠ 0 for

some positive integer 𝑚.

Proof. — Let 𝑋
𝜇
→ 𝑋1

𝑓1→ 𝑌 be the Stein factorization of 𝑓 . Then 𝜇 is a birational morphism
onto a projective normal variety 𝑋1, and the restriction of 𝜇 over 𝑋 is an isomorphism. We will
identify 𝑋1 := 𝜇(𝑋) with 𝑋 abusively. By Zariski’s Main Theorem in the equivariant setting
(cf. [GKP13, Theorem 3.8]), 𝑓1 is Galois with group 𝐺. Denote by Σ

sing
𝑌

the singular locus of Σ𝑌 ,
which is a closed subset of 𝑌 of codimension at least two. Let 𝑌

◦
:= 𝑌\Σsing

𝑌
and 𝑋

◦
1 := 𝑓 −1

1 (𝑌◦).
Then 𝑋

◦
1 is smooth, and Σ◦

𝑋1
:= 𝑋

◦
1\𝑋1 is a smooth divisor in 𝑋

◦
1. Moreover, it follows from the

proof of [Den22, Lemma A.12] that at any 𝑥 ∈ Σ◦
𝑋1

, there are admissible coordinate neighborhoods
(Ω𝑥; 𝑥1, . . . , 𝑥𝑛) centered at 𝑥, with Σ◦

𝑋1
∩Ω𝑥 = (𝑥1 = 0), and an admissible coordinate neighborhood

(Ω𝑦; 𝑦1, . . . , 𝑦𝑛) centered at 𝑓1(𝑥), with Σ𝑌 ∩Ω𝑦 = (𝑦1 = 0), such that

𝑓1(𝑥1, . . . , 𝑥𝑛) = (𝑥𝑘1 , 𝑥2, . . . , 𝑥𝑛).(4.1)

Let Ξ be the exceptional locus of 𝜇. Then 𝜇(Ξ) is a closed subset of 𝑋1 of codimension at least
two. The closed subset Υ := ∪𝑔∈𝐺𝑔.𝜇(Ξ) of 𝑋1 also has codimension at least two.

By assumption, there exists a non-zero 𝑃 ∈ 𝐻0(𝑋, Sym𝑘Ω
𝑋
(logΣ𝑋)) for some positive inte-

ger 𝑘 . Since 𝜇 is an isomorphism over 𝑋
◦
1\Υ, 𝑃 induces a logarithmic symmetric differential on
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(𝑋◦
1, Σ

◦
𝑋1
) |
𝑋
◦
1\Υ

. By the Hartogs theorem, such a logarithmic symmetric differential extends to a loga-
rithmic symmetric differential 𝑃0 ∈ 𝐻0 (𝑋◦

1, Sym𝑘Ω
𝑋
◦
1
(logΣ◦

𝑋1
)
)
. We define 𝑄 :=

∏
𝑔∈𝐺 𝑔

∗𝑃, which
is a non-zero 𝐺-invariant logarithmic symmetric differential in 𝐻0 (𝑋◦

1, Sym𝑘 |𝐺 |Ω
𝑋
◦
1
(logΣ◦

𝑋1
)
)
, as

𝑔 : (𝑋◦
1, Σ

◦
𝑋1
) → (𝑋◦

1, Σ
◦
𝑋1
)

is an automorphism of the log pair (𝑋◦
1, Σ

◦
𝑋1
) for any 𝑔 ∈ 𝐺. By the local description of 𝑓1 in (4.1), 𝑄

descends to a logarithmic symmetric differential

𝑅 ∈ 𝐻0 (𝑌◦
, Sym |𝐺 |𝑘Ω

𝑌
(logΣ𝑌 ) |𝑌◦

)
,

such that 𝑓 ∗1 𝑅 = 𝑄. Since𝑌\𝑌◦
has codimension at least two, by the Hartogs theorem again, 𝑅 extends

to a non-zero logarithmic symmetric differential in

𝐻0 (𝑌, Sym |𝐺 |𝑘Ω
𝑌
(logΣ𝑌 )

)
.

The lemma is proved. □

4.2. Constructing logarithmic symmetric differentials. — Let 𝑋 be a smooth projective compact-
ification of 𝑋 such that Σ = 𝑋\𝑋 is a simple normal crossing divisor. We fix a smooth Kähler
metric 𝜔 on 𝑋 , and let 𝜔 be its restriction on 𝑋 . By Theorem A, 𝑢̃ is harmonic with respect to
𝜔. Let 𝑢 : 𝑋 → 𝑋 ×𝜚 Δ(𝐺) be the corresponding section of 𝑢̃ defined in Section 2.2. Recall that
|∇𝑢 |2𝜔 ∈ 𝐿1

loc(𝑋) is the energy density function in section 1.2. By Remark 1.5, |∇𝑢 |2𝜔 is moreover
locally bounded as 𝑢̃ is locally Lipschitz.

Fix now an apartment 𝐴 in Δ(𝐺), which is isometric to R𝑁 . Here 𝑁 is the 𝐾-rank of 𝐺. Let
𝑊 ⊂ Isom(𝐴) be the affine Weyl group of Δ(𝐺). The vectorial Weyl group 𝑊𝑣 := 𝑊 ∩ GL(𝐴) is
a finite group generated by reflections. Note that 𝑊 = 𝑊𝑣 ⋉ Λ, where Λ is a lattice acting on 𝐴 by
translations. For the root system Φ = {𝛼1, . . . , 𝛼𝑚} ⊂ 𝐴∗ − {0} of Δ(𝐺), one has

{𝑤∗𝛼1, . . . , 𝑤
∗𝛼𝑚} = {𝛼1, . . . , 𝛼𝑚} for any 𝑤 ∈ 𝑊𝑣 .

In other words, the action of𝑊𝑣 on Φ is a permutation. It follows that

{𝑤∗𝑑𝛼1, . . . , 𝑤
∗𝑑𝛼𝑚} = {𝑑𝛼1, . . . , 𝑑𝛼𝑚} for any 𝑤 ∈ 𝑊.(4.2)

Here each 𝑑𝛼𝑖 is a linear real one-form on 𝐴.
For any regular point 𝑥 ∈ R(𝑢) of 𝑢 (cf. Definition 2.9), one can choose a simply-connected open

neighborhood𝑈 of 𝑥 such that

– the inverse image 𝜋−1
𝑋
(𝑈) =

∐
𝑖∈𝐼 𝑈𝑖 is a union of disjoint open sets in 𝑋 , each of which is

mapped isomorphically onto𝑈 by 𝜋𝑋 : 𝑋 → 𝑋 .
– For some 𝑖 ∈ 𝐼, there is an apartment 𝐴𝑖 of Δ(𝐺) such that 𝑢(𝑈𝑖) ⊂ 𝐴𝑖 .

Since 𝑢̃ is 𝜚-equivariant and 𝐺 (𝐾) acts transitively on the set of apartments of Δ(𝐺), for any other
𝑈 𝑗 , 𝑢(𝑈 𝑗) is contained in some other apartment 𝐴 𝑗 . For each 𝑗 ∈ 𝐼, we choose 𝑔 𝑗 ∈ 𝐺 (𝐾) such that
𝑔 𝑗 (𝐴 𝑗) = 𝐴. We denote 𝑢 𝑗 = 𝑔 𝑗 𝑢̃ ◦ (𝜋𝑋 |𝑈 𝑗

)−1 : 𝑈 → 𝐴. By the pluriharmonicity of 𝑢̃, each 𝛼𝑘 ◦ 𝑢 𝑗

is a pluriharmonic function on𝑈, and thus 𝜕𝛼𝑘 ◦ 𝑢 𝑗 is a holomorphic 1-form on𝑈.
Lemma 4.3. — For each 𝑖, 𝑗 ∈ 𝐼, the two sets of holomorphic 1-forms {𝜕𝛼1 ◦ 𝑢𝑖 , . . . , 𝜕𝛼𝑚 ◦ 𝑢𝑖} and
{𝜕𝛼1 ◦ 𝑢 𝑗 , . . . , 𝜕𝛼𝑚 ◦ 𝑢 𝑗} coincide.
Proof. — Choose 𝛾 ∈ 𝜋1(𝑋) such that 𝛾 maps 𝑈𝑖 to 𝑈 𝑗 isomorphically. Since 𝑢̃ is 𝜚-equivariant,
one has 𝜚(𝛾)𝑢̃ ◦ (𝜋𝑋 |𝑈𝑖

)−1 = 𝑢̃ ◦ (𝜋𝑋 |𝑈 𝑗
)−1, and thus

𝑢 𝑗 = 𝑔 𝑗 𝜚(𝛾)𝑔−1
𝑖 𝑢𝑖 .(4.3)

We write 𝑔 := 𝑔 𝑗 𝜚(𝛾)𝑔−1
𝑖

∈ 𝐺 (𝐾). Then (4.3) implies that 𝑢𝑖 (𝑈) ⊂ 𝐴 ∩ 𝑔−1𝐴. By [KP23, Corollary
4.2.25] and [KP23, Axiom 4.1.4 (A 1)], there exists 𝑤 ∈ 𝑊 such that 𝑤𝑥 = 𝑔𝑥 for any 𝑥 ∈ 𝐴 ∩ 𝑔−1𝐴.
This implies that 𝑢 𝑗 = 𝑤𝑢𝑖 . We conclude that

{𝜕𝛼1 ◦ 𝑢 𝑗 , . . . , 𝜕𝛼𝑚 ◦ 𝑢 𝑗} = {𝜕𝛼1 ◦ 𝑤𝑢𝑖 , . . . , 𝜕𝛼𝑚 ◦ 𝑤𝑢𝑖} = {𝜕𝛼1 ◦ 𝑢𝑖 , . . . , 𝜕𝛼𝑚 ◦ 𝑢𝑖},
where the last equality follows from (4.2). The lemma is proved. □
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By Lemma 4.3, {𝜕𝛼1 ◦ 𝑢 𝑗 , . . . , 𝜕𝛼𝑚 ◦ 𝑢 𝑗} defines a well-defined multi-valued holomorphic 1-form
on R(𝑢), denoted by {𝜔1, . . . , 𝜔𝑚}. Let 𝑇 be a formal variable. Then we can write

𝑚∏
𝑘=1

(
𝑇 − 𝜔 𝑗

)
=: 𝑇𝑚 + 𝜎1𝑇

𝑚−1 + · · · + 𝜎𝑚,(4.4)

such that 𝜎𝑘 ∈ 𝐻0(R(𝑢), Sym𝑘Ω𝑋 |R(𝑢) ).
Proposition 4.4. — For any 𝑘 ∈ {1, . . . 𝑚}, 𝜎𝑘 extends to a logarithmic symmetric differential
𝐻0(𝑋, Sym𝑘Ω

𝑋
(logΣ)). Moreover, if 𝑢̃ is not constant, there exists some 𝑘 such that 𝜎𝑘 ≠ 0.

Proof. — By [GS92, Theorem 6.4], S(𝑢) is a closed subset of 𝑋 of Hausdorff codimension at least
two. Since 𝑢 is locally Lipschitz, for any 𝑥 ∈ 𝑋 , there are a neighborhood Ω𝑥 of 𝑥 and a constant 𝐶𝑥

such that |∇𝑢 |𝜔 ≤ 𝐶𝑥 on Ω𝑥 . Note that there is a uniform constant 𝐶0 > 0 such that

|𝜎𝑘 |𝜔 ≤ 𝐶0 |∇𝑢 |𝑘𝜔 over R(𝑢).(4.5)

Hence over Ω𝑥 ∩ R(𝑢), one has

|𝜎𝑘 |𝜔 ≤ 𝐶0 |∇𝑢 |𝑘𝜔 ≤ 𝐶0𝐶
𝑘
𝑥 .

By the result on removable singularity in [Shi68, Lemma 3.(ii)], 𝜎𝑘 extends to a holomorphic sym-
metric form in 𝐻0(𝑋, Sym𝑘Ω𝑋), which we still denote by 𝜎𝑘 .

Choose any point 𝑥 in the smooth locus of Σ. By (3.3) in Proposition 3.2, there is an admissible
coordinate neighborhood (𝑈; 𝑧1, . . . , 𝑧𝑛) centered at 𝑥 with Σ = (𝑧1 = 0), and a constant 𝐶1 > 0 such
that one has

−
𝐿2
𝛾

2𝜋
log 𝑟 · Vol

(
D𝑛−1

1
2

)
≤

∫
D
𝑟, 1

2
×D𝑛−1

1
2

|∇𝑢 |2𝜔0
dvol0 ≤ −

𝐿2
𝛾

2𝜋
log 𝑟 · Vol

(
D𝑛−1

1
2

)
+ 𝐶, ∀ 0 < 𝑟 <

1
2
.

(4.6)

Here 𝜔0 :=
√
−1

∑𝑛
𝑖=1

𝑑𝑧𝑖∧𝑑𝑧̄𝑖
2 , 𝑑vol0 is the volume form of 𝜔0 on 𝑈∗ := 𝑈\Σ, and Vol

(
D𝑛−1

1
2

)
is the

Euclidean volume of D𝑛−1
1
2

. Note that

|𝜎𝑘 |𝜔0 ≤ 𝐶0 |∇𝑢 |𝑘𝜔0
over R(𝑢).

Thus, (4.5) implies that there is a constant 𝐶 > 0 such that one has

−𝐶 log 𝑟 ≤
∫
D
𝑟, 1

2
×D𝑛−1

1
2

|𝜎 |
2
𝑘
𝜔0dvol0 ≤ −𝐶 log 𝑟 + 𝐶, ∀ 0 < 𝑟 <

1
2
.

On 𝑈∗, we write 𝜎𝑘 (𝑧) =
∑

|𝛼 |=𝑘 𝜏𝛼 (𝑧)𝑑𝑧𝛼, where 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ N𝑛 with |𝛼 | :=
∑𝑛

𝑖=1 𝛼𝑖 , and
𝑑𝑧𝛼 := 𝑑𝑧𝛼1

1 · · · 𝑑𝑧𝛼𝑛
𝑛 . Then 𝜏𝛼 are holomorphic functions over𝑈∗. It follows that for each 𝛼, we have∫

D
𝑟, 1

2
×D𝑛−1

1
2

|𝜏𝛼 (𝑧) |
2
𝑘 𝑖𝑑𝑧1 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑖𝑑𝑧𝑛 ≤ −𝐶 log 𝑟 + 𝐶, ∀ 0 < 𝑟 <

1
2
.

We now prove that 𝜏𝛼 (𝑧) extends to a meromorphic function over 𝑈 for each 𝛼. We fix even 𝑚 > 0.
Then

𝐹 (𝑟) :=
∫
D
𝑟, 1

2
×D𝑛−1

1
2

|𝑧1 |𝑚−1 |𝜏𝛼 |
2
𝑘 𝑖𝑑𝑧1 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑖𝑑𝑧𝑛 ∧ 𝑑𝑧𝑛 ≤ −𝐶 log 𝑟 + 𝐶, ∀ 0 < 𝑟 <

1
2
.

It follows that for any 𝑟 ∈ (0, 1
2 ), we have∫

D
𝑟, 1

2
×D𝑛−1

1
2

|𝑧1 |𝑚 |𝜏𝛼 |
2
𝑘 𝑖𝑑𝑧1 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑖𝑑𝑧𝑛 ∧ 𝑑𝑧𝑛 = −

∫ 1
2

𝑟

𝑡𝐹′(𝑡)𝑑𝑡

= 𝑟𝐹 (𝑟) +
∫ 1

2

𝑟

𝐹 (𝑡)𝑑𝑡 − 1
2
𝐹 (1

2
)

≤ −𝐶𝑟 log 𝑟 + 𝐶𝑟 − 𝐶
∫ 1

2

𝑟

log 𝑡𝑑𝑡 − 1
2
𝐹 (1

2
) + (1

2
− 𝑟)𝐶.
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This yields ∫
D∗1

2
×D𝑛−1

1
2

|𝑧1 |𝑚 |𝜏𝛼 |
2
𝑘 𝑖𝑑𝑧1 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑖𝑑𝑧𝑛 ∧ 𝑑𝑧𝑛 < +∞.

By Lemma 4.5 below we conclude that 𝑧
𝑘𝑚

2
1 𝜏𝛼, hence 𝜏𝛼 extends to a meromorphic function over

D𝑛. Thus, there exists some ℓ ∈ Z such that 𝜏𝛼 (𝑧) = 𝑧ℓ1𝑏𝛼 (𝑧) such that 𝑏𝛼 (𝑧) ∈ 𝒪(𝑈) which is not
identically equal to zero on Σ.

Take a point 𝑦 = (0, 𝑦2, . . . , 𝑦𝑛) ∈ Σ ∩ 𝑈 such that 𝑏𝛼 (𝑦) ≠ 0. Then for some 𝜀 > 0 one has
|𝑏𝛼 (𝑧) |

2
𝑘 ⩾ 𝐶3 over

𝑉 := {(𝑧1, . . . , 𝑧𝑛) ∈ D∗
1
2
× D𝑛−1

1
2

| |𝑧1 | < 𝜀, |𝑧2 − 𝑦2 | < 𝜀, . . . , |𝑧𝑛 − 𝑦𝑛 | < 𝜀}

for some constant 𝐶3 > 0. We shall switch to the Poincaré-type metric 𝜔𝑃 defined in (1.2) on𝑈∗ and
apply (3.4). By the construction of 𝜎𝑘 , we have

|𝜎𝑘 |𝜔𝑃
≤ 𝐶0 |∇𝑢 |𝑘𝜔𝑃

over R(𝑢).
Since

|𝜎𝑘 (𝑧) |𝜔𝑃
≥ |𝜏𝛼 (𝑧)𝑑𝑧𝛼 |𝜔𝑃

= |𝜏𝛼 (𝑧) | |𝑧1 |2𝛼1 (log |𝑧1 |2)2𝛼1 ,

then by (3.4), there exists a constant 𝐶4 > 0 such that one has

𝐶3Vol
(
D𝑛−1

1
2

) ∫ 1
2

𝑟

𝑡
2ℓ+2𝛼1

𝑘 𝑑 log 𝑡
| log 𝑡 |2

=

𝐶3

∫
𝑉∩D

𝑟, 1
2
×D𝑛−1

1
2

|𝑧1 |
2ℓ+2𝛼1

𝑘
𝑖𝑑𝑧1 ∧ 𝑑𝑧1

|𝑧1 |2(log |𝑧1 |)2 ∧ 𝑖𝑑𝑧2 ∧ 𝑑𝑧2 ∧ · · · ∧ 𝑖𝑑𝑧𝑛 ∧ 𝑑𝑧𝑛

≤
∫
𝑉∩D

𝑟, 1
2
×D𝑛−1

1
2

|𝜎𝑘 |2𝜔𝑃
𝑑vol𝜔𝑃

≤ 𝐶4 log
1
𝑟
+ 𝐶4, ∀ 0 < 𝑟 <

1
2
.(4.7)

If ℓ < −𝛼1, then there exists 𝜀 > 0 such that 𝑡
2ℓ+2𝛼1

𝑘 ≥ 2| log 𝑡 |3 for 0 < 𝑡 < 𝜀. It follows that there
exists a constant 𝐶5 > 0 with∫ 1

2

𝑟

𝑡
2ℓ+2𝛼1

𝑘 𝑑 log 𝑡
| log 𝑡 |2

⩾ log2 𝑟 − 𝐶5, ∀ 0 < 𝑟 < 𝜀.

By (4.7), we have

𝐶3Vol
(
D𝑛−1

1
2

)
(log2 𝑟 − 𝐶5) ≤ 𝐶4 log

1
𝑟
+ 𝐶4, ∀ 0 < 𝑟 < 𝜀.

for any 0 < 𝑟 < 𝜀2, which yields a contradiction. Thus, ℓ + 𝛼1 ⩾ 0, which implies that

𝜎𝑘 ∈ 𝐻0(𝑋◦
, Sym𝑘Ω

𝑋
(logΣ) |

𝑋
◦).

Here we denote by 𝑋
◦

:= 𝑋\ ∪ 𝑗≠𝑖 Σ𝑖 ∩ Σ 𝑗 whose complement has codimension at least two in 𝑋 . By
the Hartogs theorem, it extends to a logarithmic symmetric form on 𝑋 . The first claim is proved.

If 𝑢 is not constant, then there is some connected open set𝑈 ⊂ 𝑋 such that the pluriharmonic map
𝑢𝑖 : 𝑈 → 𝐴 defined above is not constant. As𝐺 is semisimple, its root system {𝛼1, . . . , 𝛼𝑚} generates
𝐴∗. Thus, the mutivalued holomorphic 1-form {𝜔1, . . . , 𝜔𝑚} constructed above is non zero. By (4.4),
𝜎𝑘 ≠ 0 for some 𝑘 ∈ {1, . . . , 𝑚}. We prove the second claim. The proposition is proved. □

The following lemma is the criterion on the meromorphicity of functions in terms of 𝐿 𝑝-
boundedness.
Lemma 4.5. — Let 𝑓 be a holomorphic function on (D∗)ℓ × D𝑛−ℓ such that∫

(D∗ )ℓ×D𝑛−ℓ
| 𝑓 (𝑧) |𝑝𝑖𝑑𝑧1 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑖𝑑𝑧𝑛 ∧ 𝑑𝑧𝑛 ≤ 𝐶,

for some real 0 < 𝑝 < ∞ and some positive constant 𝐶. Then 𝑓 extends to a meromorphic function
on D𝑛.
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Proof. — Since | 𝑓 (𝑧) |𝑝 is plurisubharmonic on (D∗)𝑘 × Dℓ , by the mean value inequality, for any
𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ (D∗

1
2
)ℓ × (D 1

2
)𝑛−ℓ one has

| 𝑓 (𝑧) |𝑝 ≤ 4𝑛−ℓ

𝜋𝑛
∏ℓ

𝑖=1 |𝑧𝑖 |2

∫
Ω𝑧

| 𝑓 (𝜁) |𝑝𝑖𝑑𝜁1 ∧ 𝑑𝜁1 ∧ · · · ∧ 𝑖𝑑𝜁𝑛 ∧ 𝑑𝜁𝑛 ≤ 4𝑛−ℓ𝐶
𝜋𝑛

∏ℓ
𝑖=1 |𝑧𝑖 |2

where

Ω𝑧 := {(𝜁1, . . . , 𝜁𝑛) ∈ (D∗)ℓ × D𝑛−ℓ | |𝜁𝑖 − 𝑧𝑖 |< |𝑧𝑖 | for 𝑖 ≤ ℓ; |𝜁𝑖 − 𝑧𝑖 | <
1
2

for 𝑖 > ℓ}.

Thus, there is a constant 𝐶0 > 0 such that

| 𝑓 (𝑧) | ≤ 𝐶0

ℓ∏
𝑖=1

|𝑧𝑖 |−
2
𝑝

for any 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ (D∗
1
2
)ℓ × (D 1

2
)𝑛−ℓ . Hence

∏ℓ
𝑖=1 𝑧

⌈ 2
𝑝
⌉

𝑖
𝑓 (𝑧) is bounded over (D∗

1
2
)ℓ × (D 1

2
)𝑛−ℓ .

By the Riemann extension theorem, it extends to a holomorphic function over D𝑛. The lemma is
proved. □

Theorem 4.6. — Let (𝑋,Σ) be a log smooth pair. Let 𝐾 be a non-archimedean local field 𝐾 . If
𝜚 : 𝜋1(𝑋) → GL𝑁 (𝐾) is an unbounded representation, then we have

𝐻0(𝑋, Sym𝑘Ω
𝑋
(logΣ)) ≠ 0(4.8)

for some positive integer 𝑘 .
Proof. — Step 1: Assume that 𝜚 is reductive. By Lemma 4.2, to prove (4.8), we are free to replace 𝑋
by its finite étale covers. We denote by 𝐺 the Zariski closure of 𝜚, which is assumed to be reductive.
Let 𝐺0 be the identity component of 𝐺. After replacing 𝑋 by a finite étale cover corresponding to the
finite index subgroup 𝜚−1(𝜚(𝜋1(𝑋)) ∩𝐺0(𝐾)) of 𝜋1(𝑋), we can assume that the Zariski closure 𝐺 of
𝜚 is connected. Hence the radical 𝑅(𝐺) of 𝐺 is a torus, and the derived group 𝐷 (𝐺) is semisimple.
Write 𝑇 := 𝐺/𝐷 (𝐺) and 𝐺′ = 𝐺/𝑅(𝐺). Then 𝐺′ is semisimple and 𝑇 is a torus. Moreover, the
natural morphism

𝐺 → 𝐺′ × 𝑇
is an isogeny. We may assume that 𝐺′ and 𝑇 are split over 𝐾 after we replace 𝐾 by a finite extension.
Denote by 𝜚′ : 𝜋1(𝑋) → 𝐺′(𝐾) × 𝑇 (𝐾) the composed morphism of 𝜚 and 𝐺 (𝐾) → 𝑇 (𝐾) × 𝐺′(𝐾).
Then it is also Zariski dense.

Since we assume that the image of 𝜚(𝜋1(𝑋)) is unbounded, it follows that the image of 𝜚′ is
also unbounded (see e.g. [KP23, Lemma 2.2.10]). Let 𝑝1 : 𝐺′(𝐾) × 𝑇 (𝐾) → 𝐺′(𝐾) and 𝑝2 :
𝐺′(𝐾) ×𝑇 (𝐾) → 𝑇 (𝐾) be the projection maps. Then representations 𝜎1 := 𝑝1 ◦ 𝜚′ and 𝜎2 := 𝑝2 ◦ 𝜚′
are both Zariski dense.

Assume first that 𝜎1 : 𝜋1(𝑋) → 𝐺′(𝐾) is unbounded. By Theorem 2.1, there is a locally Lipschitz
𝜎1-equivariant pluriharmonic map 𝑢̃ : 𝑋 → Δ(𝐺′) which has logarithmic energy growth. Note that 𝑢̃
is not constant; otherwise, its image point would be fixed by 𝜎1(𝜋1(𝑋)), and the subgroup of 𝐺′(𝐾)
fixing a point of Δ(𝐺′) is compact, which contradicts our assumption. Thus, (4.8) follows from
Proposition 4.4.

Now assume that 𝜎1 : 𝜋1(𝑋) → 𝐺′(𝐾) is bounded. Then the image of 𝜎2 : 𝜋1(𝑋) → 𝑇 (𝐾)
is unbounded and must be infinite. Since 𝑇 (𝐾) is abelian, it follows that 𝜎2 induces a morphism
𝐻1(𝑋,Z) → 𝑇 (𝐾) with infinite image. In particular, by the universal coefficient theorem, we
conclude that 𝐻1(𝑋,C) is infinite.
Claim 4.7. — 𝐻0(𝑋,Ω

𝑋
(logΣ)) ≠ 0.

Proof of Claim 4.7. — By the theory of mixed Hodge structures, one has an isomorphism

𝐻1(𝑋,C) ≃ 𝐻0(𝑋,Ω
𝑋
(logΣ)) ⊕ 𝐻0,1(𝑋).

Since 𝐻1(𝑋,C) is infinite, either 𝐻0(𝑋,Ω
𝑋
(logΣ)) or 𝐻0,1(𝑋) is non-zero. In the latter case, by

Hodge duality, 𝐻0(𝑋,Ω
𝑋
) and thus 𝐻0(𝑋,Ω

𝑋
(logΣ)) are non-zero. □
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In summary, we have proved that 𝐻0(𝑋, Sym𝑘Ω
𝑋
(logΣ)) ≠ 0 for some positive integer if 𝜚 is

reductive.

Step 2: General case. Let 𝜚𝑠𝑠 : 𝜋1(𝑋) → GL𝑁 (𝐾̄) be the semisimplification of 𝜚. It follows that
𝜚𝑠𝑠 is reductive. Since 𝜋1(𝑋) is finitely generated, there exists a finite extension 𝐿 of 𝐾 such that
𝜚𝑠𝑠 : 𝜋1(𝑋) → GL𝑁 (𝐿). Note that 𝜚𝑠𝑠 is also unbounded (see e.g. [DYK23, Lemma 3.5]). Applying
the result from Step 1, we conclude (4.8). The theorem is proved. □

5. Proof of Theorem B

5.1. On Simpson’s integrality conjecture. — In [Sim92], Simpson conjectured that for any smooth
projective variety 𝑋 , a rigid representation 𝜚 : 𝜋1(𝑋) → GL𝑁 (C) is conjugate to an integral one, i.e.
a representation 𝜋1(𝑋) → GL𝑁 (𝑂𝑘) where 𝑘 is a number field and 𝑂𝑘 denotes the ring of integers
of 𝑘 . This is known as Simpson’s integrality conjecture. In [Kli13, Corollary 1.8], Klingler proved
Simpson’s conjecture for compact Kähler manifolds that do not admit symmetric differentials. In this
subsection, we extend Klingler’s theorem to smooth quasi-projective varieties.
Theorem 5.1. — Let (𝑋, Σ) be a log smooth pair. Assume that 𝐻0(𝑋, Sym𝑘Ω

𝑋
(logΣ)) = 0 for every

positive integer 𝑘 . Then for any positive integer 𝑁 , each semisimple representation 𝜚 : 𝜋1(𝑋) →
GL𝑁 (C) is rigid and integral. Moreover, 𝜚 is a complex direct factor of a Z-variation of Hodge
structure.
Proof. — Step 1: Any reductive representation is rigid. Let 𝑅B(𝑋, 𝑁) be the representation scheme
of 𝜋1(𝑋) into GL𝑁 , which is an affine scheme of finite type defined over Q (cf. [LM85] for the
definition). For any field 𝐾 , we have 𝑅B(𝑋, 𝑁) (𝐾) = Hom(𝜋1(𝑋),GL𝑁 (𝐾)). Note that GL𝑁 acts
on 𝑅B(𝑋, 𝑁) by conjugation. Denote by 𝜋 : 𝑅B(𝑋, 𝑁) → 𝑀B(𝑋, 𝑁) the GIT quotient, which is a
surjective morphism of affine schemes of finite type defined over Z.

If 𝑀B(𝑋, 𝑁) is a positive-dimensional affine scheme, then there exists a Q̄-morphism
𝜓 : 𝑀B(𝑋, 𝑁) → A1 whose image is Zariski dense. Since 𝜋 is surjective, we can find a
closed irreducible curve 𝐶 ⊂ 𝑅B(𝑋, 𝑁) defined over Q̄ such that 𝜓 ◦ 𝜋 |𝐶 : 𝐶 → A1 is generically
finite. We may take an open subset𝑈 ⊂ A1 over which the morphism 𝜓 ◦ 𝜋 |𝐶 : 𝐶 → A1 is finite.

Let 𝑘 be a finite extension ofQ such that𝐶 is defined over 𝑘 , and𝜓◦𝜋 |𝐶 is a morphism of 𝑘-schemes.
Let 𝔭 be a non-archimedean place of 𝑘 , and 𝑘𝔭 be its completion. Then 𝑘𝔭 is a non-archimedean
local field of characteristic zero. Take 𝑥 ∈ 𝑈 (𝑘𝔭) and 𝑦 ∈ 𝐶 (𝑘𝔭) over 𝑥. Then 𝑦 is defined over some
finite extension of 𝑘𝔭, with its degree controlled by the degree of 𝜓 ◦ 𝜋 |𝐶 . Note that there are only
finitely many such field extensions. Hence there exists a finite extension 𝐿 of 𝑘𝔭 such that the points
over 𝑈 (𝑘𝔭) are all contained in 𝐶 (𝐿). Since 𝑈 (𝑘𝔭) is unbounded, the image 𝜓 ◦ 𝜋(𝐶 (𝐿)) ⊂ A1(𝐿)
is unbounded.

Let 𝑅0 be the set of all bounded representations in 𝑅B(𝑋, 𝑁) (𝐿). By a theorem of Yamanoi
( [Yam10, Lemma 4.2]), 𝑀0 = 𝜋(𝑅0) is compact in 𝑀B(𝑋, 𝑁) (𝐿) with respect to the analytic
topology, implying that 𝜓(𝑀0) is bounded in A1(𝐿). Accordingly, there exists some 𝜏 ∈ 𝐶 (𝐿) such
that 𝜏 : 𝜋1(𝑋) → GL𝑁 (𝐿) is unbounded. By Theorem 4.6, we have 𝐻0(𝑋, Sym𝑘Ω

𝑋
(logΣ)) ≠ 0 for

some positive integer 𝑘 . This leads to a contradiction, proving that 𝑀B(𝑋, 𝑁) is zero-dimensional.
Hence any representation 𝜚 : 𝜋1(𝑋) → GL𝑁 (C) is rigid.

Step 2: Any rigid representation is integral. Let 𝜚 : 𝜋1(𝑋) → GL𝑁 (C) be a semisimple representation.
By Step 1, it is rigid. Thus, after conjugation, there exists a number field 𝑘 such that 𝜚 : 𝜋1(𝑋) →
GL𝑁 (𝑘). Let 𝔭 be a non-archimedean place of 𝑘 , and let 𝑘𝔭 be its completion. By assumption and
Theorem 4.6, the extension 𝜋1(𝑋) → GL𝑁 (𝑘𝔭) of 𝜚 is bounded for each non-archimedean place 𝔭 of
𝑘 . Therefore, 𝜚 factors through 𝜋1(𝑋) → GL𝑁 (𝑂𝑘), where 𝑂𝑘 is the ring of integers of 𝑘 . Thus, 𝜚
is integral.

Step 3: 𝜚 is a complex direct factor of a Z-VHS. Let 𝜚 : 𝜋1(𝑋) → GL𝑁 (𝑂𝑘) be as in Step 2.
For every embedding 𝜎 : 𝑘 → C, the composition 𝜎 ◦ 𝜚 : 𝜋1(𝑋) → GL𝑁 (C) is semisimple and
rigid. By [Moc06], 𝜎 ◦ 𝜚 underlies a complex variation of Hodge structure for each embedding
𝜎 : 𝑘 → C. The conditions in [LS18, Proposition 7.1 and Lemma 7.2] are satisfied, and we
apply [LS18, Proposition 7.1] to conclude that 𝜚 is a complex direct factor of a Z-variation of Hodge
structure. The theorem is thus proved. □
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Remark 5.2. — The above proof gives a new proof of the rigidity part [Ara02] in the projective case.
In the first version of the present paper on arXiv, we used Uhlenbeck’s compactness in gauge theory
to prove such result. However, we felt that it would be more interesting to establish Theorem 5.1 from
the theory of harmonic maps to Bruhat-Tits buildings, as it provides a unified approach to both rigidity
and integrality.

It is worth noting that non-abelian Hodge theory in the archimedean setting cannot be entirely
avoided. Specifically, in Step 3, we rely on Mochizuki’s theorem in [Moc06], whose proof is based
on harmonic maps to symmetric spaces.

Recently, Esnault and Groechenig [EG18] proved that a cohomologically rigid local system over a
quasi-projective variety with finite determinant and quasi-unipotent local monodromies at infinity is
also integral.

5.2. Proof of Theorem B. — Let us prove Theorem B.

5.2.1. The case of characteristic zero. —
Proof of Theorem B for charK = 0. — Since 𝜋1(𝑋) is finitely generated, there exists a subfield 𝑘 ⊂ K
such that tr.deg.(𝑘/Q) < ∞ and 𝜏(𝜋1(𝑋)) ⊂ GL𝑁 (𝑘). We can choose an embedding 𝑘 → C, and
thus assume that 𝜏 : 𝜋1(𝑋) → GL𝑁 (C).

Thanks to Lemma 4.2, to prove the theorem, we are free to replace 𝑋 by finite étale covers. Let
𝜎 : 𝜋1(𝑋) → GL𝑁 (C) be the semisimplification of 𝜏. If 𝜎(𝜋1(𝑋)) is finite, then after replacing 𝑋
by a finite étale cover, we can assume that 𝜎(𝜋1(𝑋)) is trivial. In other words, 𝜏(𝜋1(𝑋)) is contained
in some unipotent group𝑈 ⊂ GL𝑁 (C). Then, there exists a sequence of normal subgroups

𝑈 = 𝑈0 ⊃ 𝑈1 ⊃ · · · ⊃ 𝑈𝑠 = {1}

such that each 𝑈𝑖/𝑈𝑖+1 is commutative. Since 𝜏(𝜋1(𝑋)) is infinite, after replacing 𝑋 by a finite étale
cover, there exists some 𝑖 such that 𝜏(𝜋1(𝑋)) ⊂ 𝑈𝑖 and the natural map 𝜏′ : 𝜋1(𝑋) → 𝑈𝑖/𝑈𝑖+1
induced by 𝜏 has infinite image. Since 𝑈𝑖/𝑈𝑖+1 is abelian, 𝜏′ factors through 𝐻1(𝑋,Z) → 𝑈𝑖/𝑈𝑖+1.
In other words, 𝐻1(𝑋,Z) is infinite. By the universal coefficient theorem, 𝐻1(𝑋,C) is also infinite.
By Claim 4.7, we have 𝐻0(𝑋,Ω

𝑋
(logΣ)) ≠ 0. The theorem is proved if 𝜎 has finite image.

Now, assume 𝜎 has infinite image. We assume by contradiction that

𝐻0(𝑋, Sym𝑘Ω
𝑋
(logΣ)) = 0

for all 𝑘 > 0. By Theorem 5.1, 𝜎 is a direct factor of a semisimple representation 𝜚 : 𝜋1(𝑋) →
GL𝑚(Z) underlying a Z-variation of Hodge structure. Let

Φ : 𝑋 → 𝒟/Γ

be the corresponding period map, where 𝒟 is the period domain and Γ = 𝜚(𝜋1(𝑋)) is the monodromy
group, which acts discretely on 𝒟. By Malcev’s theorem, we can replace 𝑋 by a finite étale cover such
that Γ is torsion-free. Since 𝜚 has infinite image, Φ has positive-dimensional image. By a theorem of
Griffiths [Gri70], there is a Zariski open subset 𝑋1 ⊂ 𝑋 containing 𝑋 such that Φ extends to a proper
holomorphic map 𝑋1 → 𝒟/Γ. Its image 𝑍 is thus a proper subvariety of 𝒟/Γ. By a theorem of
Sommese [Som78, Proposition IV] (or [DYK23] for a new proof), there exists:

(a) a proper bimeromorphic map 𝜈 : 𝑌 → 𝑍 from a smooth quasi-projective variety 𝑌 ,
(b) a proper birational morphism 𝜇 : 𝑋2 → 𝑋1 from a smooth quasi-projective variety 𝑋2,
(c) an algebraic and surjective morphism 𝑓 : 𝑋2 → 𝑌 ,

such that we have the following commutative diagram:

𝑋2 𝑋1

𝑌 𝑍

𝜇

𝑓

𝜈

Take a smooth projective compactification 𝑌 of 𝑌 such that Σ𝑌 = 𝑌 − 𝑌 is a simple normal crossing
divisor. Then 𝑌 → 𝑍 → 𝒟/Γ is a generically immersive and horizontal map. By [Bru18, BC20],
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we know that the logarithmic cotangent bundle Ω
𝑌
(logΣ𝑌 ) is big. Therefore, there exists a positive

integer 𝑘 such that
𝐻0(𝑌, Sym𝑘Ω

𝑌
(logΣ𝑌 )) ≠ 0.

Take a smooth projective compactification 𝑋2 of 𝑋2 such that:

– Σ2 = 𝑋2\𝑋2 is a simple normal crossing divisor.
– 𝑓 extends to a surjective morphism 𝑓 : 𝑋2 → 𝑌 with 𝑓 −1(Σ𝑌 ) ⊂ Σ2.
– 𝜇 extends to a birational morphism 𝜇̄ : 𝑋2 → 𝑋 with 𝜇̄−1(Σ𝑋) ⊂ Σ2.

We pull back a non-zero logarithmic symmetric differential in 𝐻0(𝑌, Sym𝑘Ω
𝑌
(logΣ𝑌 )) via 𝑓 to

obtain a non-trivial element 𝑃 ∈ 𝐻0(𝑋2, Sym𝑘Ω
𝑋2
(logΣ2)). Let Ξ be the exceptional locus of 𝜇̄.

Then 𝜇̄(Ξ) has codimension at least two in 𝑋 since 𝜇 is birational. Thus, 𝑃 induces a section 𝑃0 ∈
𝐻0(𝑋\𝜇(Ξ), Sym𝑘Ω

𝑋
(logΣ) |

𝑋\Ξ). By Hartogs’ theorem, 𝑃0 extends to a non-trivial logarithmic
symmetric differential in 𝐻0(𝑋, Sym𝑘Ω

𝑋
(logΣ)). The theorem is proved in the case where charK =

0. □

5.2.2. The case of positive characteristic. —
Proof of Theorem B for charK > 0.. — We can assume that K is algebraically closed after replacing
K with its algebraic closure. Let 𝑝 = charK. Let 𝑅B(𝜋1(𝑋),GL𝑁 ) be the representation scheme of
𝜋1(𝑋) into GL𝑁 , which is of finite type and defined overZ. Note that 𝑅B(𝜋1(𝑋),GL𝑁 ) (K) can be iden-
tified with the set Hom (𝜋1(𝑋),GL𝑁 (K)). Consider the base change 𝑅F𝑝 := 𝑅B(𝜋1(𝑋),GL𝑁 ) ×SpecZ
SpecF𝑝, which is an affine F𝑝-scheme of finite type. We note that GL(𝑁, F𝑝) acts on 𝑅F𝑝 via
conjugation. Using Seshadri’s extension of geometric invariant quotient theory for schemes, we can
take the GIT quotient of 𝑅F𝑝 by GL(𝑁, F𝑝), denoted by 𝑀F𝑝 . Then 𝑀F𝑝 is also an affine F𝑝-scheme
of finite type. Note that the K-points 𝑀F𝑝 (K) are identified with the conjugacy classes of semisimple
representations 𝜋1(𝑋) → GL𝑁 (K).
Case 1: 𝑀F𝑝 is positive dimensional. Since the morphism 𝜋𝑝 : 𝑅F𝑝 → 𝑀F𝑝 is surjective between
affine F𝑝-schemes of finite type, we can find an irreducible affine curve 𝐶𝑜 ⊂ 𝑅F𝑝 defined over F̄𝑝
such that 𝜋𝑝 (𝐶𝑜) is positive dimensional. Let 𝐶 be the compactification of the normalization 𝐶 of
𝐶𝑜, and let {𝑃1, . . . , 𝑃ℓ} = 𝐶\𝐶. One can find a positive integer 𝑚 such that 𝐶 is defined over F𝑞
with 𝑞 = 𝑝𝑚, and 𝑃𝑖 ∈ 𝐶 (F𝑞) for each 𝑖.

By the universal property of the representation scheme, 𝐶 gives rise to a representation 𝜚𝐶 :
𝜋1(𝑋) → GL𝑁 (F𝑞 [𝐶]), where F𝑞 [𝐶] is the coordinate ring of 𝐶. Consider the discrete valuation
𝑣𝑖 : F𝑞 (𝐶) → Z defined by 𝑃𝑖 , where F𝑞 (𝐶) is the function field of 𝐶. Let �F𝑞 (𝐶)𝑣𝑖 be the completion
of F𝑞 (𝐶) with respect to 𝑣𝑖 . Then we have

(�F𝑞 (𝐶)𝑣𝑖 , 𝑣𝑖 ) ≃
(
F𝑞 ((𝑡)), 𝑣

)
, where

(
F𝑞 ((𝑡)), 𝑣

)
is the

formal Laurent field of F𝑝 with the valuation 𝑣 defined by 𝑣(∑+∞
𝑖=𝑚 𝑎𝑖𝑡

𝑖) = min{𝑖 | 𝑎𝑖 ≠ 0}. Let
𝜚𝑖 : 𝜋1(𝑋) → GL𝑁 (F𝑞 ((𝑡))) be the extension of 𝜚𝐶 with respect to

(�F𝑞 (𝐶)𝑣𝑖 , 𝑣𝑖 ) .
Claim 5.3. — There exists some 𝑖 ∈ {1, . . . , ℓ} such that 𝜚𝑖 : 𝜋1(𝑋) → GL𝑁 (F𝑞 ((𝑡))) is unbounded.
Proof. — Assume for the sake of contradiction that 𝜚𝑖 is bounded for each 𝑖. Then after replacing 𝜚𝑖
by some conjugation, we have 𝜚𝑖 (𝜋1(𝑋)) ⊂ GL𝑁 (F𝑞 [[𝑡]]). For any matrix 𝐴 ∈ GL𝑁 (𝐵) where 𝐵 is
an F𝑝-algebra, we denote by 𝜒(𝐴) = 𝑇𝑁 + 𝜎1(𝐴)𝑇𝑁−1 + · · · + 𝜎𝑁 (𝐴) its characteristic polynomial
with 𝜎𝑖 (𝐴) ∈ 𝐵 the coefficients. Then 𝜎𝑗 (𝜚𝐶 (𝛾)) ∈ F𝑞 [𝐶] for every 𝛾 ∈ 𝜋1(𝑋).

Since we have assumed that 𝜚𝑖 (𝜋1(𝑋)) ⊂ GL𝑁 (F𝑞 [[𝑡]]) for every 𝑖, it follows that 𝜎𝑗 (𝜚𝑖 (𝛾)) ∈
F𝑞 [[𝑡]] for each 𝑖 ∈ {1, . . . , ℓ} and 𝑗 ∈ {1, . . . , 𝑁}. Therefore, by the definition of 𝜚𝑖 ,
𝑣𝑖

(
𝜎𝑗 (𝜚𝐶 (𝛾))

)
≥ 0 for each 𝑖. It follows that 𝜎𝑗 (𝜚𝐶 (𝛾)) extends to a regular function on 𝐶,

which is thus constant. This implies that for any {𝜂𝑖 : 𝜋1(𝑋) → GL𝑁 (𝐾𝑖)}𝑖=1,2 with such that
char𝐾𝑖 = 𝑝 and 𝜂𝑖 ∈ 𝐶 (𝐾𝑖), we have 𝜒(𝜂1(𝛾)) = 𝜒(𝜂2(𝛾)) for each 𝛾 ∈ 𝜋1(𝑋). It yields [𝜂1] = [𝜂2].
Hence 𝜋𝑝 (𝐶𝑜) is a point, leading to a contradiction. □

Claim 5.3 together with Theorem 4.6 imply the existence of non-trivial logarithmic symmetric
differentials in 𝐻0(𝑋, Sym𝑘Ω

𝑋
(logΣ)). We have thus proved the theorem when 𝑀F𝑝 is positive

dimensional.
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Case 2: 𝑀F𝑝 is zero dimensional. We will prove that this case cannot occur. First, assume that
𝜏 : 𝜋1(𝑋) → GL𝑁 (K) is semisimple. It follows that 𝜏 is conjugate to some 𝜚′ : 𝜋1(𝑋) → GL𝑁 (F̄𝑝).
Since 𝜋1(𝑋) is finitely generated, we have 𝜚′(𝜋1(𝑋)) ⊂ GL𝑁 (F𝑞) for some 𝑞 = 𝑝𝑚. Since GL𝑁 (F𝑞)
is a finite group, it follows that 𝜚′(𝜋1(𝑋)), hence 𝜏(𝜋1(𝑋)), is finite. This leads to a contradiction.
Hence the semisimplification of 𝜏 must have finite image.

After replacing 𝑋 by a finite étale cover, we can assume that 𝜏(𝜋1(𝑋)) is contained in the subgroup
of strictly upper-triangular matrices in GL𝑁 (K), which is a successive extension of G𝑎,K. Hence
𝜏(𝜋1(𝑋)) is a successive extension of finitely generated subgroups of G𝑎,K, all of which are finite. It
follows that 𝜏(𝜋1(𝑋)) is finite, leading again to a contradiction. Thus,𝑀F𝑝 cannot be zero dimensional.

The proof of the theorem is accomplished. □

Appendix A. Pluriharmonic maps from a quasi-projective surface

In a series of remarkable papers [Moc07, Moc06], Mochizuki proves the existence of a plurihar-
monic metrics on flat vector bundles over smooth quasi-projective varieties. These metrics correspond
to infinite energy pluriharmonic maps into symmetric spaces of noncompact type by the Donaldson-
Corlette theorem (cf. [Don87, Cor88]). The key step in Mochizuki’s argument is to show that the
harmonic metric over a quasi-projective surface is actually pluriharmonic. The existence of pluri-
harmonic metrics on a higher dimensional smooth quasi-projective variety follows from an inductive
argument on the dimension. In this appendix, we generalize Mochizuki’s argument to prove the
following.
Theorem C. — Let (𝑋, Σ) be a log smooth pair with dim 𝑋 = 2, 𝑌 be a Riemannian manifold
with strongly nonpositive curvature or a Euclidean building, and 𝜌 : 𝜋1(𝑋) → Isom(𝑌 ) be an
isometric action on 𝑌 . Endow 𝑋 with a Poincaré-type Kähler metric 𝑔 defined in Section 1.3. Then a
𝜚-equivariant harmonic map 𝑢̃ : 𝑋 → 𝑌 with logarithmic growth with respect to 𝑔 is pluriharmonic.

Note that symmetric space of noncompact type has strongly nonpositive curvature (cf. [Loh90,
Corollary 5.5]). Thus, Theorem C includes these cases which have already been proved by Mochizuki
(cf. [Moc06, Proposition 11.20]).

The notion of harmonic maps of logarithmic energy growth has been discussed in [DM23a]
and [DM24a]. Loosely speaking, this means that the energy density function of 𝑢 grows like 1

𝑟
along

a disk transverse to a Σ. For the purpose of this appendix, it suffices to know that 𝑢 satisfies the energy
estimates listed in Section A.4. We established this in [DM24a].

We will assume for the majority of the appendix that (𝑋, Σ) is a log smooth pair with dim 𝑋 = 2,
and that the target space 𝑌 is either a Riemannian manifold 𝑀 of strongly nonpositive curvature or a
Euclidean building Δ(𝐺). In Section A.6 and Section A.7, we treat the two cases 𝑌 = 𝑀 or 𝑌 = Δ(𝐺)
separately.

A.1. Pairing of forms. — We will use the following notation. Let 𝑀 be a smooth Riemannian
manifold and 𝑇𝑀 ⊗ C be its complexified tangent bundle. For a smooth map 𝑢 : 𝑋 → 𝑀 , let
𝐸 := 𝑢∗(𝑇𝑀 ⊗ C). Decompose the pullback of the Levi-Civita connection as

∇ = ∇′ + ∇′′

where
∇′ : 𝐶∞(𝐸) → Ω1,0(𝐸), ∇′′ : 𝐶∞(𝐸) → Ω0,1(𝐸).

In turn, ∇′ and ∇′′ induce differential operators

𝜕𝐸 : Ω𝑝,𝑞 (𝐸) → Ω𝑝+1,𝑞 (𝐸), 𝜕𝐸 : Ω𝑝,𝑞 (𝐸) → Ω𝑝,𝑞+1(𝐸)
where

𝜕𝐸 (𝜙 ⊗ 𝑠) = 𝜕𝜙 ⊗ 𝑠 + (−1) 𝑝+𝑞𝜙 ⊗ ∇′
𝐸 𝑠

𝜕𝐸 (𝜙 ⊗ 𝑠) = 𝜕𝜙 ⊗ 𝑠 + (−1) 𝑝+𝑞𝜙 ⊗ ∇′′
𝐸 𝑠.

Let {𝑠𝑖} be a local frame of 𝐸 . For

𝜓 = 𝜓𝑖 ⊗ 𝑠𝑖 ∈ Ω𝑝,𝑞 (𝐸) and 𝜉 = 𝜉𝑖 ⊗ 𝑠𝑖 ∈ Ω𝑝′ ,𝑞′ (𝐸)
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we set
{𝜓, 𝜉} = ⟨𝑠𝑖 , 𝑠 𝑗⟩𝜓𝑖 ∧ 𝜉 𝑗 ∈ Ω𝑝+𝑞′ ,𝑞+𝑝′

where ⟨·, ·⟩ is the sesquilinear extension to 𝑇𝑀 ⊗ C of the Riemannian metric on 𝑀 .
Remark A.1. — Consider the case when 𝑢̃ : 𝑋 → 𝑌 = Δ(𝐺) is a harmonic map into a building. Let
𝑥 ∈ R(𝑢) and let N and 𝐴 be as in Definition 2.9. Isometrically identify 𝜑 : R𝑁 ≃ 𝐴 and view the
restriction 𝑢𝜑 := 𝑢̃ |N as a map into R𝑁 . Thus 𝜕𝑢𝜑 =

𝜕𝑢𝜑

𝜕𝑧̄𝛼
𝑑𝑧𝛼 is a (0, 1)-form with values in C𝑁 . Note

that 𝜕𝑢𝜑 is independent of the choice of the isometric identification 𝐴 ≃ R𝑁 up to rotation. Therefore,
the (1, 1)-form {𝜕𝑢𝜑 , 𝜕𝑢𝜑} is independent of the choice of the isometric identification R𝑁 ≃ 𝐴. For
this reason, we henceforth denote {𝜕𝑢𝜑 , 𝜕𝑢𝜑} simply as {𝜕𝑢, 𝜕𝑢}. This function is well-defined on
the regular set R(𝑢) which is an open set in 𝑋 of codimension 2. By the local Lipschitz regularity
of 𝑢̃,

��{𝜕𝑢, 𝜕𝑢}�� is an integrable function on any compact subdomain of 𝑋 , and we will henceforth
interpret it as a locally 𝐿1-function defined a.e. on 𝑋 .

A.2. Cut-off functions. — Denote D𝑧𝑖 to indicate that the complex coordinate 𝑧𝑖 parameterizes D.
Let 𝑃 ∈ Σ𝑖 ∩Σ 𝑗 for 𝑖 ≠ 𝑗 , and let𝑉𝑃 be a neighborhood of 𝑃 containing no other crossings. Choose

holomorphic trivializations 𝑒𝑖 (resp. 𝑒 𝑗) of 𝒪
𝑋
(Σ𝑖) (resp. 𝒪

𝑋
(Σ 𝑗)) on 𝑉𝑃 and define 𝑧1 (resp. 𝑧2) by

setting 𝜎𝑖 = 𝑧1𝑒𝑖 , (resp. 𝜎𝑗 = 𝑧
2𝑒 𝑗). Let ℎ 𝑗 be a Hermitian metric on 𝒪

𝑋
(Σ 𝑗) such that |𝑒 𝑗 |ℎ 𝑗

= 1 in
𝑉𝑃 for any crossing 𝑃.

Let ℎ be a Hermitian metric on 𝑋 , not necessarily Kähler, such that the following holds:

(i) The metric ℎ is the Euclidean metric in a neighborhood 𝑉𝑃 of every crossing 𝑃, i.e.

ℎ|𝑉𝑃
= 𝑑𝑧1𝑑𝑧1 + 𝑑𝑧2𝑑𝑧2.

By rescaling𝜎1 and𝜎2 if necessary, we can assume without loss of generality thatD𝑧1×D𝑧2 ⊂ 𝑉𝑃 .

(ii) The metric ℎ induces the orthogonal decomposition 𝑇𝑋 |Σ 𝑗
= 𝑇Σ 𝑗 ⊕ 𝑁Σ 𝑗 and under the natural

isomorphism
𝑁Σ 𝑗 ≃ 𝒪

𝑋
(Σ 𝑗) |Σ 𝑗

,

the restriction of ℎ to 𝑁Σ 𝑗 is same as ℎ 𝑗 .

By scaling the metric ℎ if necessary, we can assume that the restriction of the exponential map

exp : 𝑁Σ 𝑗 ⊂ 𝑇𝑋 |Σ 𝑗
→ 𝑋

to D 𝑗 = {𝜈 ∈ 𝑁Σ 𝑗 : |𝜈 |ℎ 𝑗
< 1} defines a diffeomorphism. We identity D 𝑗 as a neighborhood of Σ 𝑗

in 𝑋; i.e. D 𝑗 ≃ exp(D 𝑗) ⊂ 𝑋. Let D∗
𝑗
= D\Σ 𝑗 .

Fix a non-increasing, non-negative smooth function 𝜂 : [0,∞) → [0, 1] satisfying

𝜂(𝑥) = 1 for 0 ≤ 𝑥 ≤ 1
2
, 𝜂(𝑥) = 0 for

2
3
≤ 𝑥 < ∞.

For 𝑁 ∈ N, define a cut-off function

𝜒𝑁 : 𝑋 → [0, 1], 𝜒𝑁 =


𝐿∏
𝑗=1
𝜂

(
𝑁−1 log |𝜎𝑗 |−2

ℎ 𝑗

)
in

𝐿⋃
𝑗=1

D∗
𝑗

1 otherwise.

A.3. Neighborhood of divisors. — We follow the notation of Sections 1.3 and A.2. The restriction
of the normal bundle 𝑁Σ 𝑗 → Σ 𝑗 to D 𝑗 defines a disk bundle

(A.1) 𝜋 𝑗 : D 𝑗 → Σ 𝑗 .

We now consider a finite collection of sets near the divisor of the following two types:

– A set of type (A) admits a local unitary trivialization

(A.2) 𝜋−1
𝑗 (Ω) ≃ Ω × D𝑧2 ,

of 𝜋 𝑗 : D̄ 𝑗 → Σ 𝑗 whereΩ ⊂ Σ 𝑗 is a contractible open subset of Σ 𝑗 containing no crossings. With
𝜎𝑗 the canonical section of 𝒪

𝑋
(Σ 𝑗) as before, define a function 𝜁 on Ω × D by 𝜎𝑗 = 𝜁𝑒. Thus,
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𝜁 is holomorphic with respect to the complex structure on 𝑋 and (𝜁, 𝑧2) define holomorphic
coordinates on a set Ω × D of type (A).

– A set of type (B) is a open set D𝑧1 × D𝑧2 ⊂ 𝑉𝑃 where 𝑉𝑃 be an open set as in Section A.2
containing a single crossing 𝑃 ∈ Σ𝑖 ∩ Σ 𝑗 (𝑖 ≠ 𝑗). By the property (i) of the hermitian metric ℎ
(cf. Section A.2), (𝑧1, 𝑧2) are holomorphic coordinates with respect to the complex structure on
𝑋 . Furthermore, with the identification D𝑧1 ≃ D𝑧1 × {0} ⊂ Σ𝑖 (resp. D𝑧2 ≃ {0} × D𝑧2 ⊂ Σ 𝑗),
𝜋−1
𝑗
(D𝑧1) ≃ D𝑧1 × D𝑧2 (resp. 𝜋−1

𝑖
(D𝑧2) ≃ D𝑧1 × D𝑧2) is a local unitary trivialization of

𝜋 𝑗 : D 𝑗 → Σ 𝑗 (resp. 𝜋𝑖 : D̄𝑖 → Σ𝑖).

Definition A.2. — Fix a smooth Kähler metric 𝜔 on 𝑋 . We define a Kähler form on 𝑋\⋃
𝑖≠ 𝑗 Σ𝑖 by

𝑔Σ 𝑗
:= 𝐶𝜔 −

√
−1
2

∑︁
𝑖≠ 𝑗

𝜕𝜕 log log |𝜎𝑖 |−2
ℎ𝑖
.(A.3)

Define 𝑔Σ 𝑗
to be the restriction to Σ 𝑗\

⋃
𝑖≠ 𝑗 Σ𝑖 of the Kähler metric associated to this Kähler form.

This is a smooth metric on Σ 𝑗 away from the crossings. We will use the following volume estimates
for the Poincaré-type Kähler metric 𝑔 defined in (1.3). For more details, we refer to [DM24a, Section
3].

– In a set of type (A), we write 𝑧2 = 𝑟𝑒𝑖 𝜃 in polar coordinates. We have

(A.4) 𝑑vol𝑔 = 𝑑vol𝑃
(
1 +𝑂

(
1

(− log 𝑟2 + 𝛼)2

))
where 𝛼 = 𝛼(𝜁) is a smooth function.

𝑑vol𝑃 = 𝑑vol𝑔 𝑗
∧ 𝑑𝑧2 ∧ 𝑑𝑧2

−2𝑖𝑟2(− log 𝑟2 + 𝛼)2

and 𝑔 𝑗 is the restriction to Σ 𝑗 of the Kähler metric 𝑔𝜎 𝑗
defined in (A.3).

– In a set of type (B), we write 𝑧1 = 𝜚𝑒𝑖𝜙 and 𝑧2 = 𝑟𝑒𝑖 𝜃 in polar coordinates. We have

(A.5) 𝑑vol𝑔 = 𝑑vol𝑃
(
1 +𝑂

(
1

(log 𝑟2)2

)
+𝑂

(
1

(log 𝑟2)2

))
,

where

𝑑vol𝑃 =
𝑑𝑧1 ∧ 𝑑𝑧1

−2𝑖 𝜚2(log 𝜚2)2 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

−2𝑖𝑟2(log 𝑟2)2 .

A.4. Energy estimates for harmonic maps of logarithmic growth. — Let 𝐿 𝑗 be the translation
length of 𝜚(𝛾 𝑗) where 𝛾 𝑗 is the element of 𝜋1(𝑋) corresponding to a loop around the irreducible
componentΣ 𝑗 of the divisorΣ. Throughout this paper, the 𝜌-equivariant harmonic map 𝑢̃ in Theorem C
are assumed to satisfy the following estimates:
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(i) In the set Ω×D∗
1
4

away from a crossing where (𝑧1, 𝜁 = 𝑠𝑒𝑖𝜂) are the holomorphic coordinates on
Ω × D, ∫

Ω×D̄∗1
4

���� 𝜕𝑢𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
𝑠2(− log 𝑠2)2 < ∞

∫
Ω×D̄∗1

4

(����𝜕𝑢𝜕𝜁 ����2 − 𝐿 𝑗

16𝜋𝑠2

)
𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁 < ∞

∫
Ω×D̄∗1

4

����𝜕𝑢𝜕𝜁 ����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
(− log 𝑠2)2 < ∞

∫
Ω×D̄∗1

4

����𝜕𝑢𝜕𝑠 ����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁 < ∞

∫
Ω×D̄∗1

4

(����𝜕𝑢𝜕𝜂 ����2 − 𝐿2
𝑗

4𝜋

)
𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁

𝑠2 < ∞

∫
Ω×D∗1

4

����𝜕𝑢𝜕𝜂 ����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
𝑠2(− log 𝑠2)2 < ∞.

(ii) In the set D̄∗
1
4
× D̄∗

1
4

at a crossing where (𝑧1 = 𝜚𝑒𝑖𝜙, 𝑧2 = 𝑟𝑒𝑖 𝜃 ) are the holomorphic coordinates
on D × D:

∫
D̄∗1

4
×D̄∗1

4

(���� 𝜕𝑢𝜕𝑧1

����2 − 𝐿2
𝑖

16𝜋𝜚2

)
𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2(− log 𝑟2)2 < ∞

∫
D̄∗1

4
×D̄∗1

4

(���� 𝜕𝑢𝜕𝑧2

����2 − 𝐿2
𝑗

16𝜋𝑟2

)
𝑑𝑧1 ∧ 𝑑𝑧1

𝜚2(− log 𝜚2)2 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2 < ∞

∫
D̄∗1

4
×D̄∗1

4

���� 𝜕𝑢𝜕𝜚 ����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2(− log 𝑟2)2 < ∞

∫
D̄∗1

4
×D̄∗1

4

����𝜕𝑢𝜕𝑟 ����2 𝑑𝑧1 ∧ 𝑑𝑧1

𝜚2(− log 𝜚2)2 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2 < ∞

∫
D̄∗1

4
×D̄∗1

4

(���� 𝜕𝑢𝜕𝜙 ����2 − 𝐿2
𝑗

4𝜋

)
𝑑𝑧1 ∧ 𝑑𝑧1

𝜚2 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2(− log 𝑟2)2 < ∞

∫
D̄∗1

4
×D̄∗1

4

(����𝜕𝑢𝜕𝜃 ����2 − 𝐿2
𝑖

4𝜋

)
𝑑𝑧1 ∧ 𝑑𝑧1

𝜚2(− log 𝜚2)2 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2 < ∞.

Remark A.3. — In [DM24a], we constructed a 𝜌-equivariant harmonic map satisfying the above
estimates (cf. [DM24a, Theorem 6.6 and Theorem 6.7]) under the assumption that 𝜌 is proper; i.e.
the sublevel sets of the function 𝛿 : 𝑋̃ → [0,∞) defined by

𝛿(𝑃) = max{𝑑 (𝜌(𝜆)𝑃, 𝑃) : 𝜆 ∈ Λ}.

are bounded in 𝑌 .

A.5. Technical results. — We will prove the technical results needed in the proof of Theorem C.
The arguments presented here are similar to those contained in [Moc07]. We include all the details
for the sake of completeness.
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Lemma A.4. — Let𝑉 = D̄∗
1
4
×D̄∗

1
4

be a set at a crossing (cf. Section A.4 (ii)) and (𝑧1 = 𝜚𝑒𝑖𝜙, 𝑧2 = 𝑟𝑒𝑖 𝜃 )
be holomorphic coordinates in 𝑉 . If {𝐹𝑁 }∞𝑁=1 is a sequence of functions defined on 𝑉 satisfying the
following:

(a) |𝐹𝑁 (𝑧1, 𝑧2) | ≤ 𝑐

(− log 𝑟2)2 for some constant 𝑐 > 0 independent of 𝑁 ,

(b) 𝑐0 :=
∫
𝑉

𝐹𝑁 (𝑧1, 𝑧2) 𝑑𝑧
1 ∧ 𝑑𝑧1

𝜚2 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2 is independent of 𝑁 , and

(c) for any 𝑧2 ∈ D∗
1
4

with |𝑧2 | = 𝑟 , 𝐹𝑁 (𝑧1, 𝑧2) = 0 for 𝑁 sufficiently large,

then

lim
𝑁→∞

∫
𝑉

𝐹𝑁 (𝑧1, 𝑧2)
���� 𝜕𝑢𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2 =
𝑐0𝐿

2
𝑖

16𝜋
.

Proof. — We first rewrite∫
𝑉

𝐹𝑁 (𝑧1, 𝑧2)
���� 𝜕𝑢𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2

=
𝐿2
𝑖

16𝜋

∫
𝑉

𝐹𝑁 (𝑧1, 𝑧2) 𝑑𝑧
1 ∧ 𝑑𝑧1

𝜚2 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2

+
∫
𝑉

𝐹𝑁 (𝑧1, 𝑧2)
(���� 𝜕𝑢𝜕𝑧1

����2 − 𝐿2
𝑖

16𝜋𝜚2

)
𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2 .(A.6)

The first term is equal to 𝑐0𝐿
2
𝑖

16𝜋 by assumption (b). For the second term of (A.14), we first rewrite the
integral as ∫ 1

4

0

©­«
∫
D∗1

4

∫ 2𝜋

0
𝐹𝑁 (𝑧1, 𝑧2)

(���� 𝜕𝑢𝜕𝑧1

����2 − 𝐿2
𝑖

16𝜋𝜚2

)
𝜚𝑑𝜙 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

−2𝑖𝑟2
ª®¬ 𝑑𝜚.

By assumption (a), the integral inside the bracket, i.e. the function

(A.7) 𝑟 ↦→
∫
D∗1

4

∫ 2𝜋

0
𝐹𝑁 (𝑧1, 𝑧2)

(���� 𝜕𝑢𝜕𝑧1

����2 − 𝐿2
𝑖

16𝜋𝜚2

)
𝜚𝑑𝜙 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

−2𝑖𝑟2 ,

is bounded from above (independently of 𝑁) by a non-negative function

𝑟 ↦→ 𝑐

∫
D∗1

4

∫ 2𝜋

0

(���� 𝜕𝑢𝜕𝑧1

����2 − 𝐿2
𝑖

16𝜋𝜚2

)
𝜚𝑑𝜙 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

−2𝑖𝑟2(− log 𝑟2)2 .

The above is non-negative by the definition of 𝐿𝑖 and integrable over the interval [0, 1
4 ] by Sec-

tion A.4 (ii). Furthermore, the function (A.7) converges to 0 for each 𝑟 ∈ (0, 1
4 ) by assumption (c).

Thus, Lebesgue’s dominated convergence theorem implies the result. □

Proposition A.5. — If {𝜒𝑁 } is the sequence of cut-off functions defined in Section A.2, then

(A.8) lim
𝑁→∞

∫
𝑋

𝜕𝜕𝜒𝑁 ∧ {𝜕𝑢, 𝜕𝑢} < ∞.

Proof. — Let 𝑉 be either a set Ω×D∗
1
4

away from the crossings (cf. Section A.4 (i)) or a set D̄∗
1
4
× D̄∗

1
4

at a crossing (cf. Section A.4 (ii)). Since 𝜕𝜕𝜒𝑁 is supported in the finite union of such sets for
sufficiently large 𝑁 , it suffices to prove

(A.9) lim
𝑁→∞

∫
𝑉

𝜕𝜕𝜒𝑁 ∧ {𝜕𝑢, 𝜕𝑢} < ∞

for either 𝑉 = Ω × D∗
1
4

or 𝑉 = D̄∗
1
4
× D̄∗

1
4
. Throughout this proof of (A.9), we will use 𝑐 to denote a

generic positive constant that may change from line to line but is independent of 𝑁 ∈ N.
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First, consider the subset 𝑉 = D̄∗
1
4
× D̄∗

1
4

near a crossing with local holomorphic coordinates

(𝑧1 = 𝜚𝑒𝑖𝜙, 𝑧2 = 𝑟𝑒𝑖 𝜃 ). In 𝑉 and for 𝑁 sufficiently large,

𝜒𝑁 (𝑧1, 𝑧2) = 𝜂

(
−𝑁−1 log 𝜚2

)
𝜂

(
−𝑁−1 log 𝑟2

)
.

The support of 𝜂′
(
−𝑁−1 log 𝜚2) and 𝜂′′

(
−𝑁−1 log 𝜚2) is contained in

(A.10) 𝑊𝑁 :=
{

1
2
≤ −𝑁−1 log 𝜚2 ≤ 2

3

}
and the support of 𝜂′

(
−𝑁−1 log 𝑟2) and 𝜂′′

(
−𝑁−1 log 𝑟2) is contained in

(A.11) 𝑉𝑁 :=
{

1
2
≤ −𝑁−1 log 𝑟2 ≤ 2

3

}
.

Therefore,

(− log 𝜚2)
����𝜂′(−𝑁−1 log 𝜚2)

𝑁

���� ≤ 𝑐, (− log 𝑟2)
����𝜂′(−𝑁−1 log 𝑟2)

𝑁

���� ≤ 𝑐
(− log 𝜚2)2

����𝜂′′(−𝑁−1 log 𝜚2)
𝑁2

���� ≤ 𝑐, (− log 𝑟2)2
����𝜂′′(−𝑁−1 log 𝑟2)

𝑁2

���� ≤ 𝑐.(A.12)

We have

𝜕𝜕𝜒𝑁 = 𝜂(−𝑁−1 log 𝜚2)𝜂′′(−𝑁−1 log 𝑟2) 𝑑𝑧
2 ∧ 𝑑𝑧2

𝑁2𝑟2

+𝜂′′(−𝑁−1 log 𝜚2)𝜂(−𝑁−1 log 𝑟2) 𝑑𝑧
1 ∧ 𝑑𝑧1

𝑁2𝜚2

+𝜂′(−𝑁−1 log 𝜚2)𝜂′(−𝑁−1 log 𝑟2) 𝑑𝑧
1 ∧ 𝑑𝑧2

𝑁2𝑧1𝑧2

+𝜂′(−𝑁−1 log 𝑟2)𝜂′(−𝑁−1 log 𝜚2) 𝑑𝑧
2 ∧ 𝑑𝑧1

𝑁2𝑧1𝑧2
.(A.13)

Using (A.13), we write the integral of (A.9) as the sum (𝑖) + (𝑖𝑖) + (𝑖𝑖𝑖) + (𝑖𝑣) where

(𝑖) =

∫
𝑉

𝜂(−𝑁−1 log 𝜚2)𝜂′′(−𝑁−1 log 𝑟2) 𝑑𝑧
2 ∧ 𝑑𝑧2

𝑁2𝑟2 ∧ {𝜕𝑢, 𝜕𝑢}

(𝑖𝑖) =

∫
𝑉

𝜂′′(−𝑁−1 log 𝜚2)𝜂(−𝑁−1 log 𝑟2) 𝑑𝑧
1 ∧ 𝑑𝑧1

𝑁2𝜚2 ∧ {𝜕𝑢, 𝜕𝑢}

(𝑖𝑖𝑖) =

∫
𝑉

𝜂′(−𝑁−1 log 𝜚2)𝜂′(−𝑁−1 log 𝑟2) 𝑑𝑧
1 ∧ 𝑑𝑧2

𝑁2𝑧1𝑧2 ∧ {𝜕𝑢, 𝜕𝑢}

(𝑖𝑣) =

∫
𝑉

𝜂′(−𝑁−1 log 𝜚2)𝜂′(−𝑁−1 log 𝑟2) 𝑑𝑧
2 ∧ 𝑑𝑧1

𝑁2𝑧1𝑧2
∧ {𝜕𝑢, 𝜕𝑢}.

First, consider the integral (𝑖). Using the identity

⟨ 𝜕𝑢
𝜕𝑧𝛼

,
𝜕𝑢

𝜕𝑧𝛽
⟩𝑑𝑧𝛼 ∧ 𝑑𝑧𝛽 = ℎ𝑖 𝑗

𝜕𝑢𝑖

𝜕𝑧𝛼
𝜕𝑢 𝑗

𝜕𝑧𝛽
𝑑𝑧𝛼 ∧ 𝑑𝑧𝛽 = {𝜕𝑢, 𝜕𝑢},

we have

(A.14) (𝑖) =
∫
𝑉

𝜂(−𝑁−1 log 𝜚2) 𝜂
′′(−𝑁−1 log 𝑟2)

𝑁2

���� 𝜕𝑢𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2 .

We now check that

𝐹𝑁 (𝑧1, 𝑧2) = 𝜂(−𝑁−1 log 𝜚2) 𝜂
′′(−𝑁−1 log 𝑟2)

𝑁2
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satisfies the assumptions (a), (b) and (c) of Lemma A.4. First, 𝐹 (𝑧1, 𝑧2) satisfies assumption (a) of
Lemma A.4 by (A.12). Next, we will check that the function 𝐹𝑁 (𝑧1, 𝑧2) also satisfies assumption (b)
of Lemma A.4. Indeed, after a change of variables,

(A.15) 𝑡 = −𝑁−1 log 𝜚 and 𝑠 = −𝑁−1 log 𝑟,

we obtain
𝑑𝑧1 ∧ 𝑑𝑧1

𝑁𝜚2 = −2𝑖
𝑑𝜚 ∧ 𝑑𝜙
𝑁𝜚

= 2𝑖𝑑𝑡 ∧ 𝑑𝜙 and
𝑑𝑧2 ∧ 𝑑𝑧2

𝑁𝑟2 = −2𝑖
𝑑𝑟 ∧ 𝑑𝜃
𝑁𝑟

= 2𝑖𝑑𝑠 ∧ 𝑑𝜃.

Thus,

𝑐0 :=
∫
𝑉

𝜂(−𝑁−1 log 𝜚2) 𝜂
′′(−𝑁−1 log 𝑟2)

𝑁2
𝑑𝑧1 ∧ 𝑑𝑧1

𝜚2 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2

= 𝑐

∫ 1
3

0
𝜂(2𝑡)𝑑𝑡

∫ 1
3

1
4

𝜂′′(2𝑠)𝑑𝑠 = 𝑐
∫ 1

3

0
𝜂(2𝑡)𝑑𝑡 ·

(
𝜂′(2

3
) − 𝜂′(1

2
)
)
= 0.

Finally, 𝐹𝑁 (𝑧1, 𝑧2) satisfies assumption (c) of Lemma A.4 by (A.11). By applying Lemma A.4, we
conclude

(A.16) lim
𝑁→∞

| (𝑖) | = 0.

The same argument also implies
lim
𝑁→∞

| (𝑖𝑖) | = 0.

We will now bound the term (𝑖𝑖𝑖). Indeed, we can rewrite

| (𝑖𝑖𝑖) | =

�����∫𝑉

𝜂′(−𝑁−1 log 𝜚2)
𝑁

𝜂′(−𝑁−1 log 𝑟2)
𝑁

𝑑𝑧1 ∧ 𝑑𝑧2

𝑧1𝑧2 ∧ {𝜕𝑢, 𝜕𝑢}
�����

≤
∫
𝑉

����⟨ 𝜕𝑢
𝜕𝑧1 ,

𝜕𝑢

𝜕𝑧2 ⟩
���� 𝜂′(−𝑁−1 log 𝜚2)

𝑁

𝜂′(−𝑁−1 log 𝑟2)
𝑁

𝑑𝑧1 ∧ 𝑑𝑧1

𝜚
∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟

≤
∫
𝑉𝑁

���� 𝜕𝑢
𝜕𝑧1

����2 (
𝜂′(−𝑁−1 log 𝜚2)

𝑁

)2

𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2

+
∫
𝑊𝑁

���� 𝜕𝑢
𝜕𝑧2

����2 (
𝜂′(−𝑁−1 log 𝑟2)

𝑁

)2
𝑑𝑧1 ∧ 𝑑𝑧1

𝜚2 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2.(A.17)

For the first integral on the right hand side of (A.17), we let

𝐹𝑁 (𝑧1, 𝑧2) = 𝜒𝑉𝑁

(
𝜂′(−𝑁−1 log 𝑟2)

𝑁

)2

where 𝜒𝑉𝑁
is the characteristic function of𝑉𝑁 . First, 𝐹𝑁 (𝑧1, 𝑧2) satisfies assumption (a) of Lemma A.4

by (A.12),. Next, we check that it satisfies assumption (b) of Lemma A.4. Indeed, using the substitution
(A.15),

𝑐0 :=
∫
𝑉

𝜒𝑉𝑁

(
𝜂′(−𝑁−1 log 𝑟2)

𝑁

)2
𝑑𝑧1 ∧ 𝑑𝑧1

𝜚2 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2

= 𝑐

∫ 1
3

1
4

𝑑𝑡

∫ 1
3

1
4

(𝜂′(2𝑠))2𝑑𝑠.

Finally, 𝐹𝑁 (𝑧1, 𝑧2) satisfies assumption (c) of Lemma A.4 by (A.11). Thus, the second integral on the
right hand side of (A.17) limits to 𝑐0𝐿

2
𝑖

16𝜋 as 𝑁 → ∞ by Lemma A.4. Analogously, the second integral

on the right hand side of (A.17) limits to
𝑐0𝐿

2
𝑗

16𝜋 as 𝑁 → ∞. Thus, we have shown

(A.18) lim
𝑁→∞

| (𝑖𝑖𝑖) | ≤
𝑐0(𝐿2

𝑖
+ 𝐿2

𝑗
)

16𝜋
.
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Same argument shows

lim
𝑁→∞

| (𝑖𝑣) | ≤
𝑐0(𝐿2

𝑖
+ 𝐿2

𝑗
)

16𝜋
.

Summing the limits of (𝑖), (𝑖𝑖), (𝑖𝑖𝑖) and (𝑖𝑣), we conclude that (A.9) is satisfied in the case𝑉 = D̄∗
1
4
×D̄∗

1
4
.

Next, consider set𝑉 = Ω×D∗
1
4

away from the crossings with holomorphic coordinates (𝑧1, 𝜁 = 𝑟𝑒𝑖 𝜃 ).
In 𝑉 and for sufficiently large 𝑁 ,

(A.19) 𝜒𝑁 (𝑧1, 𝜁) = 𝜂
(
𝑁−1 log 𝑏 |𝜁 |−2

)
.

We compute

𝜕𝜕𝜒𝑁 =
𝜂′′(𝑁−1 log 𝑏 |𝜁 |−2)

𝑁2

(
𝑑𝜁 ∧ 𝑑𝜁
|𝜁 |2

+ 𝜕𝑏 ∧ 𝜕𝑏
𝑏2 − 𝜕𝑏 ∧ 𝑑𝜁

𝑏𝜁
− 𝑑𝜁 ∧ 𝜕𝑏

𝜁𝑏

)
+𝜂

′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

𝜕𝜕 log 𝑏.(A.20)

The support of 𝜂′ and 𝜂′′ is contained in{
1
2
≤ 𝑁−1 log 𝑏 |𝜁 |−2 ≤ 2

3

}
,

which is contained in the set

(A.21) 𝑉𝑁 = Ω × D
𝑧2,𝑐1𝑒

− 𝑁
3 ,𝑐2𝑒

− 𝑁
4

for appropriate constants 𝑐1 and 𝑐2 depending only on 𝑏. Therefore,����𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

���� ≤ 𝑐

log 𝑏𝑟−2 ≤ 𝑐

− log 𝑟2 ,(A.22) ����𝜂′′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁2

���� ≤ 𝑐

(log 𝑏𝑟−2)2 ≤ 𝑐

(− log 𝑟2)2 .(A.23)

Using (A.20), we write the integral of (A.9) as the sum (𝐼) + (𝐼 𝐼) + (𝐼 𝐼 𝐼) + (𝐼𝑉) + (𝑉). For the integral
(𝐼), we write

| (𝐼) | =

�����∫𝑉

𝜂′′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁2

𝑑𝜁 ∧ 𝑑𝜁
|𝜁 |2

∧ {𝜕𝑢, 𝜕𝑢}
�����

≤ 𝑐

∫
𝑉𝑁

���� 𝜕𝑢𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
𝑟2(− log 𝑟2)2 (by (A.23)).

By Section A.4 (i), ∫
𝑉

���� 𝜕𝑢𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
𝑟2(− log 𝑟2)2 < ∞.

Thus, Lebesgue’s dominated convergence Theorem implies

(A.24) lim
𝑁→∞

(𝐼) = 0.

For the integral (𝐼 𝐼), we write

| (𝐼 𝐼) | =

�����∫𝑉

𝜂′′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁2

𝜕𝑏 ∧ 𝜕𝑏
𝑏2 ∧ {𝜕𝑢, 𝜕𝑢}

�����
≤ 𝑐

∫
𝑉𝑁

���� 𝜕𝑢
𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
(− log 𝑟2)2 +

∫
𝑉𝑁

�����𝜕𝑢𝜕𝜁
�����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁

(− log 𝑟2)2

(by
𝜕𝑏

𝑏
= 𝑂 (1) and (𝐴.23)).

By Section A.4 (i), we can apply an analogous argument to (A.24) to conclude

lim
𝑁→∞

(𝐼 𝐼) = 0.
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In order to estimate (𝐼 𝐼 𝐼), notice that

𝑑𝜁 ∧ {𝜕𝑢, 𝜕𝑢} = 𝑑𝜁 ∧
(���� 𝜕𝑢
𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 + ⟨ 𝜕𝑢
𝜕𝑧1 ,

𝜕𝑢

𝜕𝜁
⟩𝑑𝑧1 ∧ 𝑑𝜁

)
.

Thus,

| (𝐼 𝐼 𝐼) | =

�����∫𝑉

𝜂′′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁2

𝜕𝑏 ∧ 𝑑𝜁
𝑏𝜁

∧ {𝜕𝑢, 𝜕𝑢}
�����

≤ 𝑐

∫
𝑉𝑁

(���� 𝜕𝑢
𝜕𝑧1

����2 + ����⟨ 𝜕𝑢
𝜕𝑧1 ,

𝜕𝑢

𝜕𝜁
⟩
����) 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁

𝑟 (− log 𝑟2)2

(by
𝜕𝑏

𝑏
= 𝑂 (1) and (𝐴.23))

= 𝑐

∫
𝑉𝑁

𝑟

(���� 𝜕𝑢
𝜕𝑧1

����2 + ����⟨ 𝜕𝑢
𝜕𝑧1 ,

𝜕𝑢

𝜕𝜁
⟩
����) 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁

𝑟2(− log 𝑟2)2

≤ 𝑐

∫
𝑉𝑁

(���� 𝜕𝑢
𝜕𝑧1

����2 + 𝑟2
����𝜕𝑢𝜕𝜁

����2) 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
𝑟2(− log 𝑟2)2 (by Cauchy-Schwartz).

By Section A.4 (i), we can apply an analogous argument to (A.24) to conclude

lim
𝑁→∞

(𝐼 𝐼 𝐼) = 0.

Similarly,

lim
𝑁→∞

(𝐼𝑉) = 0.

We thus conclude

lim
𝑁→∞

| (𝐼) | + |(𝐼 𝐼) | + |(𝐼 𝐼 𝐼) | + |(𝐼𝑉) | = 0.

Next,

(𝑉) =

∫
𝑉

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

𝜕𝜕 log 𝑏 ∧ {𝜕𝑢, 𝜕𝑢}

=

∫
𝑉

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

𝜕2 log 𝑏
𝜕𝑧1𝜕𝑧1 𝑑𝑧

1 ∧ 𝑑𝑧1 ∧
����𝜕𝑢𝜕𝜁

����2 𝑑𝜁 ∧ 𝑑𝜁
+
∫
𝑉

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

𝜕2 log 𝑏
𝜕𝜁𝜕𝜁

𝑑𝜁 ∧ 𝑑𝜁 ∧
���� 𝜕𝑢𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1

+
∫
𝑉

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

𝜕2 log 𝑏
𝜕𝑧1𝜕𝜁

𝑑𝑧1 ∧ 𝑑𝜁∧ < 𝜕𝑢

𝜕𝑧1 ,
𝜕𝑢

𝜕𝜁
> 𝑑𝑧1 ∧ 𝑑𝜁

+
∫
𝑉

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

𝜕2 log 𝑏
𝜕𝜁𝜕𝑧1 𝑑𝜁 ∧ 𝑑𝑧

1∧ < 𝜕𝑢

𝜕𝜁
,
𝜕𝑢

𝜕𝑧1 > 𝑑𝜁 ∧ 𝑑𝑧
1

=: (𝑉)1 + (𝑉)2 + (𝑉)3 + (𝑉)4.
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We estimate

| (𝑉)2 | ≤ 𝑐

∫
𝑉

����𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

���� ����𝜕2 log 𝑏
𝜕𝑧1𝜕𝑧1

���� ���� 𝜕𝑢𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁

≤ 𝑐

∫
𝑉𝑁

���� 𝜕𝑢𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
(− log 𝑟2)(

by
𝜕2 log 𝑏
𝜕𝜁𝜕𝜁

= 𝑂 (1) and (𝐴.22)
)

| (𝑉)3 | ≤
∫
𝑉

����𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

���� ����𝜕2 log 𝑏
𝜕𝑧1𝜕𝜁

���� ���� 𝜕𝑢𝜕𝑧1

���� ����𝜕𝑢𝜕𝜁
���� 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁

≤ 𝑐

∫
𝑉𝑁

1
(− log 𝑟2)

���� 𝜕𝑢𝜕𝑧1

���� ����𝜕𝑢𝜕𝜁
���� 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁(

by
𝜕2 log 𝑏
𝜕𝜁𝜕𝜁

= 𝑂 (1) and (𝐴.22)
)

≤ 𝑐

∫
𝑉𝑁

(���� 𝜕𝑢𝜕𝑧1

����2 + 1
(− log 𝑟2)2

����𝜕𝑢𝜕𝜁
����2) 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁

and similarly

| (𝑉)4 | ≤ 𝑐

∫
𝑉𝑁

(���� 𝜕𝑢𝜕𝑧1

����2 + 1
(− log 𝑟2)2

����𝜕𝑢𝜕𝜁 ����2
)
𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁 .

With these estimates, we can argue as in the proof of (A.24) to conclude

lim
𝑁→∞

(𝑉)2 + (𝑉)3 + (𝑉)4 = 0.

We are left to compute

(𝑉)1 =

∫
𝑉

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

𝜕2 log 𝑏
𝜕𝑧1𝜕𝑧1 𝑑𝑧

1 ∧ 𝑑𝑧1 ∧
����𝜕𝑢𝜕𝜁

����2 𝑑𝜁 ∧ 𝑑𝜁 .
First, use the identity

𝜕2 log 𝑏
𝜕𝑧1𝜕𝑧1 (𝑧1, 𝜁) = 𝜕2 log 𝑏

𝜕𝑧1𝜕𝑧1 (𝑧1, 0) +𝑂 (𝑟)

to write
(𝑉)1 = (𝑉)1𝑎 + (𝑉)1𝑏 .

We estimate

| (𝑉)1𝑏 | =

∫
𝑉

����𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

���� ����𝜕𝑢𝜕𝜁
����2𝑂 (𝜁)𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁

≤ 𝑐

∫
𝑉𝑁

𝑟

(− log 𝑟2)

����𝜕𝑢𝜕𝜁
����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁 (by (A.22)).

Thus, we can argue as in the proof of (A.24) to conclude

lim
𝑁→∞

(𝑉)1𝑏 = 0.

Furthermore,

(𝑉)1𝑎 =

∫
𝑉

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

𝜕2 log 𝑏
𝜕𝑧1𝜕𝑧1 (𝑧1, 0)𝑑𝑧1 ∧ 𝑑𝑧1 ∧

����𝜕𝑢𝜕𝜁
����2 𝑑𝜁 ∧ 𝑑𝜁

=

∫
𝑉

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

𝜕2 log 𝑏
𝜕𝑧1𝜕𝑧1 (𝑧1, 0)𝑑𝑧1 ∧ 𝑑𝑧1 ∧

(����𝜕𝑢𝜕𝜁
����2 − 𝐿2

𝑗

16𝜋𝑟2

)
𝑑𝜁 ∧ 𝑑𝜁

+
𝐿2
𝑗

4𝜋

∫
𝑉

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁𝑟2

𝜕2 log 𝑏
𝜕𝑧1𝜕𝑧1 (𝑧1, 0)𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁 .
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The first term on the right hand side above can be estimated by�����∫𝑉

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁

𝜕2 log 𝑏
𝜕𝑧1𝜕𝑧1 (𝑧1, 0)

(����𝜕𝑢𝜕𝜁
����2 − 𝐿2

𝑗

4𝜋𝑟2

)
𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁

�����
≤ 𝑐

∫
𝑉𝑁

(����𝜕𝑢𝜕𝜁
����2 − 𝐿2

𝑗

4𝜋𝑟2

)
𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁

(− log 𝑟2)

(
by

𝜕2 log 𝑏
𝜕𝑧1𝜕𝑧1 = 𝑂 (1) and (𝐴.22)

)
.

With these estimates, we can argue as in the proof of (A.16) to conclude

lim
𝑁→∞

(𝑉)1 = lim
𝑁→∞

(𝑉)1𝑎 + (𝑉)1𝑏

=
𝐿2
𝑗

4𝜋
lim
𝑁→∞

∫
𝑉

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁𝑟2

𝜕2 log 𝑏
𝜕𝑧1𝜕𝑧1 (𝑧1, 0)𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁

=
𝐿2
𝑗

4𝜋

∫
Ω

𝜕2 log 𝑏
𝜕𝑧1𝜕𝑧1 (𝑧1, 0)𝑑𝑧1 ∧ 𝑑𝑧1 · lim

𝑁→∞

∫
D
∗
1
4

𝜂′(𝑁−1 log 𝑏 |𝜁 |−2)
𝑁𝑟2 𝑑𝜁 ∧ 𝑑𝜁

=
𝐿2
𝑗

4𝜋𝑖

∫
Ω

Θ(𝒪
𝑋
(Σ 𝑗)) · lim

𝑁→∞

∫ 1
4

0

𝜂′(−𝑁−1 log 𝑏𝑟2)
𝑁𝑟

𝑑𝑟

=
𝐿 𝑗

4𝜋𝑖

∫
Ω

Θ(𝒪
𝑋
(Σ 𝑗)).

In the above Θ(𝒪
𝑋
(Σ 𝑗)) denotes the curvature of the hermitian metric ℎ 𝑗 on the line bundle 𝒪

𝑋
(Σ 𝑗).

The estimates for (𝐼), (𝐼 𝐼), (𝐼 𝐼 𝐼), (𝐼𝑉) and (𝑉) imply that (A.9) also holds for 𝑉 = Ω × D∗
1
4

away
from the crossings. □

Proposition A.6. — Assume

(A.25)
∫
𝑋

|𝜕𝐸𝜕𝑢 |2 < ∞.

If {𝜒𝑁 } is the sequence of cut-off functions defined in Section A.2, then

lim
𝑁→∞

∫
𝑋

𝑑𝜒𝑁 ∧ {𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢} = 0.

Proof. — Let 𝑉 be either a set Ω×D∗
1
4

away from the crossings (cf. Section A.4 (i)) or a set D̄∗
1
4
× D̄∗

1
4

at a crossing (cf. Section A.4 (ii)). Since the support of 𝑑𝜒𝑁 is covered by such a set𝑉 , it is sufficiently
to prove

(A.26) lim
𝑁→∞

∫
𝑉

𝑑𝜒𝑁 ∧ {𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢} = 0.

Thus, the rest of the proof is devoted to proving (A.26). For the sequel, the constant 𝑐 > 0 is an
arbitrary constant independent of the parameter 𝑁 . First, consider the set 𝑉 = D̄∗

1
4
× D̄∗

1
4

at a crossing

with local holomorphic coordinates (𝑧1 = 𝜚𝑒𝑖𝜙, 𝑧2 = 𝑟𝑒𝑖 𝜃 ) (cf. Section A.4 (ii)). We have

𝜕𝑢 − 𝜕𝑢 =

(
𝜕𝑢

𝜕𝑧1 𝑑𝑧
1 − 𝜕𝑢

𝜕𝑧1 𝑑𝑧
1
)
+

(
𝜕𝑢

𝜕𝑧2 𝑑𝑧
2 − 𝜕𝑢

𝜕𝑧2 𝑑𝑧
2
)

= 𝑖

(
𝜕𝑢

𝜕𝜚
𝜚𝑑𝜙 − 𝜕𝑢

𝜕𝜙

𝑑𝜚

𝜚

)
+ 𝑖

(
𝜕𝑢

𝜕𝑟
𝑟𝑑𝜃 − 𝜕𝑢

𝜕𝜃

𝑑𝑟

𝑟

)
and

𝑑𝜒𝑁 = −𝜂(−𝑁 log 𝜚2) 𝜂
′(−𝑁−1 log 𝑟2)

𝑁

2𝑑𝑟
𝑟

− 𝜂′(−𝑁−1 log 𝜚2)
𝑁

𝜂(−𝑁 log 𝑟2) 2𝑑𝜚
𝜚
.
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Thus, ∫
𝑉

𝑑𝜒𝑁 ∧ {𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}

= − 2
𝑁

∫
𝑉

𝜂(−𝑁−1 log 𝜚2)𝜂′(−𝑁−1 log 𝑟2) 𝑑𝑟
𝑟

∧ {𝜕𝜕𝑢, 𝜕𝑢
𝜕𝑧1 𝑑𝑧

1 − 𝜕𝑢

𝜕𝑧1 𝑑𝑧
1}

−2𝑖
𝑁

∫
𝑉

𝜂(−𝑁−1 log 𝜚2)𝜂′(−𝑁−1 log 𝑟2) 𝑑𝑟
𝑟

∧ {𝜕𝜕𝑢, 𝜕𝑢
𝜕𝑟
𝑟𝑑𝜃}

− 2
𝑁

∫
𝑉

𝜂′(−𝑁−1 log 𝜚2)𝜂(−𝑁−1 log 𝑟2) 𝑑𝜚
𝜚

∧ {𝜕𝜕𝑢, 𝜕𝑢
𝜕𝑧2 𝑑𝑧

2 − 𝜕𝑢

𝜕𝑧2 𝑑𝑧
2}

−2𝑖
𝑁

∫
𝑉

𝜂′(−𝑁−1 log 𝜚2)𝜂(−𝑁−1 log 𝑟2) 𝑑𝜚
𝜚

∧ {𝜕𝜕𝑢, 𝜕𝑢
𝜕𝜚

𝜚𝑑𝜙}(A.27)

= (𝑖) + (𝑖𝑖) + (𝑖′) + (𝑖𝑖′).

We will show that all the terms (𝑖), (𝑖𝑖), (𝑖′) and (𝑖𝑖′) go to 0 as 𝑁 → ∞. We start with (𝑖). Note
that |𝜂(−𝑁−1 log 𝜚2) | has support in 𝜚 ⩾ 𝑒−

𝑁
3 and |𝜂′(−𝑁−1 log 𝑟2) | has support in 𝑒−

𝑁
3 ≤ 𝑟 ≤ 𝑒−

𝑁
4

(cf. (A.10)). Thus, the integrand of (𝑖) has support in

𝐷𝑁 := D
𝑧2,𝑒

− 𝑁
3 , 1

4
× D

𝑧1,𝑒
− 𝑁

3 ,𝑒
− 𝑁

4
.

We estimate

| (𝑖) | ≤ 𝑐
∫
𝐷𝑁

����𝜂′(−𝑁−1 log 𝑟2)
𝑁

���� |𝜕𝜕𝑢 | ���� 𝜕𝑢𝜕𝑧1

���� 𝜚𝑑𝜚 ∧ 𝑑𝜙 ∧ 𝑟𝑑𝑟 ∧ 𝑑𝜃
𝑟

≤ 𝑐

(∫
𝐷𝑁

|𝜕𝜕𝑢 |2𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2
) 1

2

×
(∫

𝐷𝑁

(
𝜂′(−𝑁−1 log 𝑟2)

𝑁

)2 ���� 𝜕𝑢𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2

) 1
2

(by Cauchy-Schwartz and (A.12)).(A.28)

The first integral above limits to 0 as 𝑁 → ∞ by assumption (A.25), volume estimate (A.5) and
Lebesgue’s dominated convergence theorem. The limit as 𝑁 → ∞ of the second integral exists by
Lemma A.4 by following the proof of (A.18). Thus lim𝑁→∞(𝑖) = 0. An analogous argument shows
lim𝑁→∞(𝑖′) = 0.

Next,

| (𝑖𝑖) | ≤ 𝑐

∫
𝑉

����𝜂′(−𝑁−1 log 𝑟2)
𝑁

���� |𝜕𝜕𝑢 | ����𝜕𝑢𝜕𝑟 ���� 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟

≤ 𝑐

(∫
𝐷𝑁

|𝜕𝜕𝑢 |2𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

𝑟2(− log 𝑟2)2

) 1
2

×
(∫

𝐷𝑁

����𝜕𝑢𝜕𝑟 ����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2

) 1
2

(by Cauchy-Schwartz and (A.12)).

The first integral limits to 0 as 𝑁 → ∞ by assumption (A.25), volume estimate (A.5) and Lebesgue’s
dominated convergence Theorem. The second integral also limits to 0 by Section A.4 (ii) and
Lebesgue’s dominated convergence theorem. Thus, lim𝑁→∞(𝑖𝑖) = 0, and an analogous argument
shows lim𝑁→∞(𝑖𝑖′) = 0.

Next, consider a set 𝑉 = Ω × D∗
1
4

away from the crossings with holomorphic coordinates (𝑧1, 𝜁 =

𝑟𝑒𝑖 𝜃 ). Since

𝜕𝑢 − 𝜕𝑢 =

(
𝜕𝑢

𝜕𝑧1 𝑑𝑧
1 − 𝜕𝑢

𝜕𝑧1 𝑑𝑧
1
)
+ 𝑖

(
𝜕𝑢

𝜕𝑟
𝑟𝑑𝜃 − 𝜕𝑢

𝜕𝜃

𝑑𝑟

𝑟

)
,
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we have ∫
𝑋

𝑑𝜒𝑁 ∧ {𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}(A.29)

= 𝑖

∫
𝑋

𝑑𝜒𝑁 ∧ {𝜕𝜕𝑢, 𝜕𝑢
𝜕𝑟
𝑟𝑑𝜃} + 𝑖

∫
𝑋

𝑑𝜒𝑁 ∧ {𝜕𝜕𝑢, 𝜕𝑢
𝜕𝜃

𝑑𝑟

𝑟
}

+
∫
𝑋

𝑑𝜒𝑁 ∧ {𝜕𝜕𝑢, 𝜕𝑢
𝜕𝑧1 𝑑𝑧

1 − 𝜕𝑢

𝜕𝑧1 𝑑𝑧
1}

= (𝐼) + (𝐼 𝐼) + (𝐼 𝐼 𝐼)

where the integrals (𝐼), (𝐼 𝐼), and (𝐼 𝐼 𝐼) are estimated below. Let

𝐺𝑁 := Ω × D
𝑧1,𝑐1𝑒

− 𝑁
3 ,𝑐2𝑒

− 𝑁
4
.

Since,

𝑑𝜒𝑁 = −𝜂
′(𝑁−1 log 𝑏𝑟−2)

𝑁

(
2𝑑𝑟
𝑟

− 𝑑𝑏

𝑏

)
,

integral (𝐼) is bounded by

| (𝐼) | =

����∫
𝑉

𝜂′(𝑁−1 log 𝑏𝑟−2)
𝑁

(
2𝑑𝑟
𝑟

− 𝑑𝑏

𝑏

)
∧ {𝜕𝜕𝑢, 𝜕𝑢

𝜕𝑟
𝑟𝑑𝜃}

����
≤ 𝑐

∫
𝑉

|𝜕𝜕𝑢 |
����𝜕𝑢𝜕𝑟 ���� 𝜚𝑑𝜚 ∧ 𝑑𝜙 ∧ 𝑟𝑑𝑟 ∧ 𝑑𝜃

𝑟 (− log 𝑟2)

(
since

𝑑𝑏

𝑏
= 𝑂 (1)

)
≤ 𝑐

(∫
𝐺𝑁

|𝜕𝜕𝑢 |2𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
𝑟2(− log 𝑟2)2

) 1
2

×
(∫

𝐺𝑁

����𝜕𝑢𝜕𝑟 ����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
) 1

2

(by Cauchy-Schwartz).

The first integral limits to 0 by assumption (A.25), volume estimate (A.4) and Lebesgue’s dominated
convergence theorem. The second integral also limits to 0 by Section A.4 (i) (with 𝑠 = 𝑟) and
Lebesgue’s dominated convergence theorem. Thus, lim𝑁→∞(𝐼) = 0.

Next, we estimate (𝐼 𝐼). This is the term for which the modified Siu’s Bochner formula is crucial.
Indeed, we hightlight the cancellation 𝑑𝑟

𝑟
∧ 𝑑𝑟

𝑟
= 0 below:

| (𝐼 𝐼) | =

����∫
𝑉

𝜂′(𝑁−1 log 𝑏𝑟−2)
𝑁

(
2𝑑𝑟
𝑟

− 𝑑𝑏

𝑏

)
∧ {𝜕𝜕𝑢, 𝜕𝑢

𝜕𝜃

𝑑𝑟

𝑟
}
����

≤ 𝑐

∫
𝑉

����𝜂′(𝑁−1 log 𝑏𝑟−2)
𝑁

���� |𝜕𝜕𝑢 | ����𝜕𝑢𝜕𝜃 ���� 𝜚𝑑𝜚 ∧ 𝑑𝜙 ∧ 𝑟𝑑𝑟 ∧ 𝑑𝜃
𝑟(

since
𝑑𝑏

𝑏
= 𝑂 (1) and

𝑑𝑟

𝑟
∧ 𝑑𝑟

𝑟
= 0

)
≤ 𝑐

(∫
𝐺𝑁

|𝜕𝜕𝑢 |2𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
) 1

2

×
(∫

𝐺𝑁

����𝜕𝑢𝜕𝜃 ����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
𝑟2(− log 𝑟2)2

) 1
2

(by Cauchy-Schwartz).

The first integral limits to 0 by assumption (A.25), volume estimate (A.4) and Lebesgue’s dominated
convergence theorem. The second integral also limits to 0 by Section A.4 (i) (with 𝑟 = 𝑠 and 𝜃 = 𝜂)
and Lebesgue’s dominated convergence theorem. Thus, lim𝑁→∞(𝐼 𝐼) = 0.



PLURIHARMONIC MAPS INTO EUCLIDEAN BUILDINGS AND SYMMETRIC DIFFERENTIALS 49

Finally,

| (𝐼 𝐼 𝐼) | =

����∫
𝑉

𝜂′(𝑁−1 log 𝑏𝑟−2)
𝑁

(
2𝑑𝑟
𝑟

− 𝑑𝑏

𝑏

)
∧ {𝜕𝜕𝑢, 𝜕𝑢

𝜕𝑧1 𝑑𝑧
1 − 𝜕𝑢

𝜕𝑧1 𝑑𝑧
1}

����
≤ 𝑐

∫
𝐺𝑁

|𝜕𝜕𝑢 |
���� 𝜕𝑢𝜕𝑧1

���� 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
𝑟 (− log 𝑟2)(

since
𝑑𝑏

𝑏
= 𝑂 (1) and by (𝐴.22)

)
≤ 𝑐

(∫
𝐺𝑁

|𝜕𝜕𝑢 |2𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
) 1

2

×
(∫

𝐺𝑁

���� 𝜕𝑢𝜕𝑧1

����2 𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝜁 ∧ 𝑑𝜁
𝑟2(− log 𝑟2)2

) 1
2

(by Cauchy-Schwartz).

The first integral limits to 0 by assumption (A.25), volume estimate (A.4) and Lebesgue’s dominated
convergence theorem. The second integral also limits to 0 by Section A.4 (i) (with 𝑟 = 𝑠) and
Lebesgue’s dominated convergence theorem. Thus, lim𝑁→∞(𝐼 𝐼 𝐼) = 0.

We now conclude that (A.29) → 0 as 𝑁 → ∞, which combined with the fact that (A.27) → 0 as
𝑁 → ∞ implies (A.26). This concludes the proof of Lemma A.6. □

A.6. Proof of Theorem C (I). — In this section, we let 𝑌 be a Riemannian manifold with strongly
nonpositive curvature.
Lemma A.7. — Assume that the harmonic map 𝑢̃ of Theorem C maps into a Riemannian manifold
𝑀 with strongly nonpositive curvature. Then∫

𝑋

��𝜕𝐸𝜕𝑢��2 𝜔2 < ∞.

Proof. — The Siu-Sampson’s Bochner formula (cf. [Sam85]) is

𝜕𝜕{𝜕𝑢, 𝜕𝑢} = 2
(��𝜕𝐸𝜕𝑢��2 +𝑄0

)
𝜔2(A.30)

where

(A.31) 𝑄0 = −2𝑔𝛼𝛿𝑔𝛾𝛽𝑅𝑖 𝑗𝑘𝑙
𝜕𝑢𝑖

𝜕𝑧𝛼
𝜕𝑢𝑘

𝜕𝑧𝛽
𝜕𝑢 𝑗

𝜕𝑧𝛾
𝜕𝑢𝑙

𝜕𝑧𝛿
≥ 0.

In the expression for 𝑄0, we use local coordinates (𝑧𝛼) of 𝑋 and (𝑦𝑖) of 𝑌 . If 𝑌 = Δ(𝐺) is a building,
then (A.30) is valid for 𝑥 ∈ R(𝑢) with 𝑄0 = 0. Multiply by 𝜒𝑁 , integrate it over 𝑋 , and apply
integration by parts to conclude

2
∫
𝑋

(��𝜕𝐸𝜕𝑢��2 +𝑄0

)
𝜒𝑁𝜔

2 =

∫
𝑋

𝜕𝜕{𝜕𝑢, 𝜕𝑢}𝜒𝑁 =

∫
𝑋

{𝜕𝑢, 𝜕𝑢} ∧ 𝜕𝜕𝜒𝑁 .

The limit of the right hand side above as 𝑁 → ∞ is bounded by Proposition A.5. This proves
Lemma A.7. □

We are now in position to finish the proof of Theorem C when 𝑌 = 𝑀 is a Riemannian manifold
of strongly nonpositive curvature. To do so, we need the following variation of the Siu-Sampson-
Mochizuki Bochner formula for a harmonic map 𝑢 : 𝑋 → 𝑀 found in [DM23b]:(

4
��𝜕𝐸𝜕𝑢��2 +𝑄0

)
𝜔2 = 𝑑{𝜕𝐸𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}.
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where𝑄0 as in (A.31). By Lemma A.7, we can integrate the above equality and apply Proposition A.6.
Thus, we obtain ∫

𝑋

(
4
��𝜕𝐸𝜕𝑢��2 +𝑄0

)
𝜔2 =

∫
𝑋

𝑑{𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}

= lim
𝑁→∞

∫
𝑋

𝜒𝑁 𝑑{𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}

= − lim
𝑁→∞

∫
𝑋

𝑑𝜒𝑁 ∧ {𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}

= 0.

Since 𝑄0 ≥ 0 by assumption, 𝑄0 = |𝜕𝐸𝜕𝑢 | = 0. Thus, we conclude 𝜕𝐸𝜕𝑢 = 0; in other words, 𝑢 is
pluriharmonic.

A.7. Proof of Theorem C (II). — In this section, we let 𝑌 be a Euclidean building Δ(𝐺). Unlike
Section A.6, special care must be taken because of the presence of the singular set.
Lemma A.8. — For 𝜒𝑁 : 𝑋 → [0, 1] as in Section A.2,∫

𝑋

𝜕𝜕{𝜕𝑢, 𝜕𝑢}𝜒𝑁 =

∫
𝑋

{𝜕𝑢, 𝜕𝑢} ∧ 𝜕𝜕𝜒𝑁 .

Proof. — Let Ω1 be the support of 𝜒𝑁 which is relatively compact. With 𝜓𝑖 defined as in Theo-
rem 2.10, we have∫

𝑋

𝜕𝜕{𝜕𝑢, 𝜕𝑢}𝜒𝑁𝜓𝑖

=

∫
𝑋

𝜕{𝜕𝑢, 𝜕𝑢} ∧ 𝜕 (𝜒𝑁𝜓𝑖)

=

∫
𝑋

(𝜕{𝜕𝑢, 𝜕𝑢} ∧ 𝜕𝜒𝑁 )𝜓𝑖 +
∫
𝑋

(𝜕{𝜕𝑢, 𝜕𝑢} ∧ 𝜕𝜓𝑖)𝜒𝑁

= −
∫
𝑋

(
{𝜕𝑢, 𝜕𝑢} ∧ 𝜕𝜕𝜒𝑁

)
𝜓𝑖 +

∫
𝑋

{𝜕𝑢, 𝜕𝑢} ∧ 𝜕𝜒𝑁 ∧ 𝜕𝜓𝑖 +
∫
𝑋

(
𝜕{𝜕𝑢, 𝜕𝑢} ∧ 𝜕𝜓𝑖

)
𝜒𝑁 .

Furthermore, there exists a constant 𝐶 > 0 depending only on the Lipschitz constant of 𝜒𝑁 such that����∫
𝑋

{𝜕𝑢, 𝜕𝑢} ∧ 𝜕𝜒𝑁 ∧ 𝜕𝜓𝑖

���� ≤ 𝐶

∫
Ω1

|∇𝑢 |2 |∇𝜓𝑖 |𝜔2,

����∫
𝑋

(
𝜕{𝜕𝑢, 𝜕𝑢} ∧ 𝜕𝜓𝑖

)
𝜒𝑁

���� ≤ 𝐶 ∫
Ω1

|∇∇𝑢 | |∇𝜓𝑖 |𝜔2.

Thus, the assertion follows from letting 𝑖 → ∞ and applying Theorem 2.10. □

Lemma A.9. — For the harmonic map 𝑢̃ of Theorem C,∫
𝑋

��𝜕𝜕𝑢��2 𝜔2 < ∞.

Proof. — The Siu-Sampson’s Bochner formula (cf. [Sam85]) is simply

2
��𝜕𝜕𝑢��2 𝜔2 = 𝜕𝜕{𝜕𝑢, 𝜕𝑢}.

Multiply by 𝜒𝑁 , integrate it over 𝑋 , and apply Lemma A.8 to conclude

2
∫
𝑋

��𝜕𝜕𝑢��2 𝜒𝑁𝜔2 =

∫
𝑋

𝜕𝜕{𝜕𝑢, 𝜕𝑢}𝜒𝑁 =

∫
𝑋

{𝜕𝑢, 𝜕𝑢} ∧ 𝜕𝜕𝜒𝑁 .

The limit of the right hand side above as 𝑁 → ∞ is bounded by Proposition A.5. This proves
Lemma A.7. □

Lemma A.10. — For 𝜒𝑁 : 𝑋 → [0, 1] as in Section A.2,

−
∫
𝑋

𝜒𝑁 𝑑{𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢} =
∫
𝑋

𝑑𝜒𝑁 ∧ {𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}.
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Proof. — Let Ω1 be the support of 𝜒𝑁 which is relatively compact. With 𝜓𝑖 defined as in Theo-
rem 2.10, we have

−
∫
𝑋

𝜒𝑁𝜓𝑖𝑑{𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢} =

∫
𝑋

𝜓𝑖𝑑𝜒𝑁 ∧ {𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢} +
∫
𝑋

𝜒𝑁 𝑑𝜓𝑖 ∧ {𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}.

Thus, there exists a constant 𝐶 > 0 depending only on the Lipschitz constant of 𝑢 in the support of
𝜒𝑁 such that ����∫

𝑋

𝜒𝑁 𝑑𝜓𝑖 ∧ {𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}
���� ≤ 𝐶 ∫

Ω1

|∇∇𝑢 | |∇𝜓𝑖 |.

The assertion follows from letting 𝑖 → ∞ and applying Theorem 2.10. □

We are now in position to finish the proof of Theorem C when 𝑌 = Δ(𝐺) is a Euclidean building.
The Siu-Sampson-Mochizuki Bochner formula in this case is simply

4
��𝜕𝜕𝑢��2 𝜔2 = 𝑑{𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}

which holds for the harmonic map 𝑢 : 𝑋 → Δ(𝐺) in the regular set R(𝑢). By Lemma A.9, we can
integrate this formula to conclude

4
∫
𝑋

��𝜕𝜕𝑢��2 𝜔2 =

∫
𝑋

𝑑{𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}

= lim
𝑁→∞

∫
𝑋

𝜒𝑁 𝑑{𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}

= − lim
𝑁→∞

∫
𝑋

𝑑𝜒𝑁 ∧ {𝜕𝜕𝑢, 𝜕𝑢 − 𝜕𝑢}

= 0.

Here the third equality follows from Lemma A.10 and the last equality is due to Lemma A.9 and
Proposition A.6. From this, we conclude that 𝜕𝜕𝑢 = 0 a.e. on the regular set R(𝑢) of 𝑢.

To show that 𝑢 is smooth near every point 𝑝 ∈ R(𝑢), let Ω ⊂ R(𝑢) be a neighborhood of 𝑝 such
that 𝑢 maps Ω into an apartment 𝐴 ≃ R𝑁 of Δ(𝐺) and let 𝜙 ∈ 𝐶∞

𝑐 (Ω). For a sequence {𝜓𝑖} as in
Theorem 2.10, we have

lim
𝑖→∞

∫
Ω

𝜙 𝜕𝜓𝑖 ∧ 𝜕𝑢 𝜔 = 0

and thus

0 = lim
𝑖→∞

∫
Ω

(𝜙𝜓𝑖) 𝜕𝜕𝑢 𝜔 = − lim
𝑖→∞

∫
Ω

(𝜙𝜕𝜓𝑖 + 𝜓𝑖𝜕𝜙) ∧ 𝜕𝑢 𝜔 = −
∫
Ω

𝜕𝜙 ∧ 𝜕𝑢 𝜔.

In other words, 𝜕𝜕𝑢 = 0 weakly in Ω which implies 𝑢 ∈ 𝐶∞(Ω). Thus, we have shown 𝑢 is a smooth
map and 𝜕𝜕𝑢 = 0 in R(𝑢). We can now apply Lemma 2.21 to conclude that 𝑢 is a pluriharmonic map
in the sense of Definition 2.20.
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